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EVALUATE Evaluating the first derivative 
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Notice that the units are m/s, since we are taking the derivative with respect to t, which is in seconds. Now doing 
the second derivative 

2ˆ ˆ3.6 4.8  m/sa i j= −G  
The magnitude and direction of the acceleration are then: 

 ( ) ( )2 2 2 2 1 o4.83.6 4.8 m/s 6.0 m/s   ;  tan 53
3.6

a θ − § ·= + − = = =¨ ¸
© ¹

 

ASSESS We find the acceleration to be a constant vector. In general, a position vector in two dimensions that is 
quadratic in t can be related to the velocity and acceleration vectors as 
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From the above expression, we see that the constant acceleration vector a is equal to twice the coefficient of the t2 
term. 

 31. INTERPRET This problem asks you to determine how far your sailboard goes during a gust of wind that results in 
a constant acceleration. 
DEVELOP We'll assume the initial velocity is in the positive x direction ( 0

ˆ6.5  m/sv i=G ). The acceleration can be 
broken up into x and y components as follows: 

( )
( )

2 o 2

2 o 2

cos 0.48 m/s cos35 0.393 m/s

sin 0.48 m/s sin35 0.275 m/s

x

y

a a

a a

θ

θ

= = =

= = =
 

To find the displacement, we can use Equation 2.10 for both the x and y directions.  

EVALUATE The displacement in the x direction is 

( )( ) ( )( )21 12 2
0 2 26.5 m/s 6.3 s 0.393 m/s 6.3 s 48.7 mxx v t a t∆ = + = + =  

The displacement in the y direction is 

( )( )21 12 2
2 2 0.275 m/s 6.3 s 5.46 myy a t∆ = = =  

The magnitude and direction of the displacement are 

( ) ( )2 22 2

1 1 o

48.7 m 5.46 m 49 m

5.46 mtan tan 6.4
48.7 m

r x y

y
x

θ − −

∆ = ∆ + ∆ = + =

∆§ · § ·= = =¨ ¸ ¨ ¸∆© ¹ © ¹

 

ASSESS The angle of the displacement is less than that of the acceleration. That makes sense because the initial 
velocity was along the x axis, and therefore there should be a greater displacement in that direction. 

Section 3.5 Projectile Motion 

 32. INTERPRET This problem involves two objects moving under the influence of gravity near the Earth’s surface, so 
we can apply the equations of projectile motion. We are asked to find the time at which two objects hit the ground 
given their initial height and initial velocities. 

Motion in Two and Three Dimensions  3-11 

 
© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may 

be reproduced, in any form or by any means, without permission in writing from the publisher. 

DEVELOP Recall that the horizontal and vertical motions are independent of each other (see Figure 3.11). The 
time of flight t for either projectile is determined from the vertical component of the motion, which is the same for 
both. We are given that 0 2.6 my = , y = 0.0 m, and 0 0.0 m/syv = , so we can calculate t by solving Equation 
3.13, 2

0 0 /2yy y v t gt= + − . 
EVALUATE From the above equation, the total flight time is  

( ) ( )0
2

2 2 2.6 m 0.0 m
0.73 s

9.8 m/s
y y

t
g
− −

= = =  

which is the time it takes for both fruit to reach the ground. 
ASSESS The apple and the peach both reach the ground at the same time. This is expected because the total flight 
time is determined by the equation of motion in the vertical direction, which is independent of mass (and fruit 
type). The nonzero horizontal component of the velocity for the apple does not affect its vertical velocity, but only 
makes the apple move away from you as it falls.  

 33. INTERPRET This problem involves an object moving under the influence of gravity near the Earth’s surface, so 
we are dealing with projectile motion. We are given the initial velocity and height of the object, and are asked to 
find the time of flight and the horizontal distance traveled by the object before it hits the ground. 

DEVELOP Draw a diagram of the situation (see figure below) to define the coordinate system. The difference y í 
y0 = 0 m í 8.8 m = í8.8 m, and the initial vertical velocity is vy0 = 0 m/s. Using this information, we can solve 
Equation 3.13 for t, which we can then insert into Equation 3.12 to find x í x0, given that vx0 = 11 m/s. 

x
x

y
n0 5 (11m/s)î

y0 5 8.8 m

r

 

EVALUATE (a) The shingle reaches the ground when 
P

( )

0
2

0 0

0
2

1
2

2 8.8 m2 1.34 s=1.3 s
9.8 m/s

yy y v t gt

yt
g

=

− = −

= = =
 

in which we have retained two significant figures. 
(b) The horizontal displacement is ( )( )0 0 11 m/s 1.34 s 15 mx x v t− = = =  to two significant figures. 

ASSESS The height of 8.8 m indicates that the building in question is likely a two story building, taking into 
consideration the height of the worker who throws the tiles. The tiles cover a distance of 15.5 m, which is the 
length of roughly 5 pick-up trucks. 

 34. INTERPRET This problem involves an object moving under the influence of gravity near the Earth’s surface, so it 
is projectile motion. We are asked to find the horizontal distance traveled by an arrow given its initial horizontal 
velocity, vertical velocity, and the height from which it is shot. 
DEVELOP The horizontal and vertical motions of the arrows are independent of each other, so we can consider 
them separately. The time of flight t of the arrow can be determined from its range (horizontal motion, Equation 3.12). 
Once t is found, we can insert it into the equation of motion for the vertical direction (Equation 3.13) to determine 
the initial height. 
EVALUATE From Equation 3.12, the total flight time of the arrow is  

0

0

23 m 0.561s
41 m/sx

x xt
v
−= = =  
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Substituting this result into Equation 3.13, and noting that 0 0yv = , the height from which the arrow was shot is 

( )( )22 2
0

1 10.0 m 9.8 m/s 0.561 s 1.5 m
2 2

y y gt= + = + =  

to two significant figures. 
ASSESS Dropping a height of 1.5 m in half a second is reasonable for free fall. We may relate 0y to x as  

2

2 0
0

0

1 1
2 2 x

x xy gt g
v

§ ·−= = ¨ ¸
© ¹

 

From which it is clear that the larger is 0 ,y the longer it takes for the arrow to reach the ground, and the greater the 
horizontal distance traveled. 
 
 
 

 35. INTERPRET This problem involves ink drops moving under the influence of gravity near the surface of the Earth, 
so it is projectile motion. For this problem, we are given the horizontal distance traveled and the initial horizontal 
and vertical velocities. 
DEVELOP The horizontal and vertical motions of the drops are independent of each other, so we can consider 
them separately. From Equation 3.12 we can find the time of flight t, which we can insert into Equation 3.13 to find 
the vertical displacement (i.e., the distance fallen during the time interval t). This initial conditions are 

3
0 1.0 mm 1.0 10 mx x −− = = × , 0 12 m/sxv = , 0 0.0 m/syv = , and y = 0.0 m. 

EVALUATE From Equation 3.12, the total flight time for an ink drop is 
3

50

0

1.0 10 m 8.33 10 s
12 m/sx

x xt
v

−
−− ×= = = ×  

Substituting this result into Equation 3.13, we find the distance y0 that an ink drop falls is 

( )( )22 2 5 8
0

1 10.0 m 9.8 m/s 8.33 10  s 3.4 10  m 34 nm
2 2

y y gt − −= + = + × = × =  

to two significant figures. 
ASSESS This distance is an order of magnitude less than the wavelength of visible light, so it is insignificant on 
the scale of printed, visual matter. 

 36. INTERPRET This problem involves projectile motion because the objects are moving near the surface of the Earth 
under the influence of gravity. We are given the distance traveled by the particles and the distance they drop during 
this trajectory. 
DEVELOP  Traveling a distance of 1700 m with a drop of only 61.2 10  m−× indicates that the horizontal 
component of the speed must be much greater than the vertical component. With 0yv v<< the average speed can be 
approximated as 2 2

0 0yv v v v= + ≈ . We are given the displacement of the particles, y í y0 = 1.2 µm = 1.2 × 10í6 m 
the initial vertical velocity 0 0.0 m/syv = , from which we can find the time of flight t from Equation 3.13. We can 
then insert t into Equation 3.12 to estimate the average speed knowing that the horizontal displacement is x – x0 = 
1700 m. 
EVALUATE From Equation 3.13, we find the time of flight is 

( ) ( )

2
0

0 0

1
2

2 2

y y gt

y y y y
t

g g

− = −

− −
= ± =

 

where we have chose the positive square root because the negative square root is for particles traveling in the 
opposite direction. Inserting this result into Equation 3.12 gives the initial speed of the particle as 
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( ) ( ) ( ) ( )

0 0

2
60

0 0 6
0
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2 2 1.2 10 m

x

x

x x v t

x x gv x x
t y y −

− =

−= = − = = ×
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ASSESS  The particles are traveling at approximately 1% of the speed of light, so relativistic mechanics may 
apply here (see Chapter 33). 

 37. INTERPRET This is a problem in projectile motion that asks us to find the horizontal range of a golf ball on the 
Moon, given the range on Earth.  
DEVELOP Equation 3.15 gives us the horizontal range, which is how far a projectile travels over level ground (i.e., 

0 0y y= = ): 

 
2
0

0sin 2
vx
g

θ=  

We assume that the initial velocity and angle are the same on Earth and Moon. The Moon's gravity is 1.62 m/s2 
(Appendix E).  

EVALUATE The range is inversely proportional to the gravity, so 

( ) ( )
( )

2

E
M E 2

M

9.81 m/s
180 m 1090 m

1.62 m/s

gx x
g

= = =  

ASSESS In 1971 as part of the Apollo 14 mission, the astronaut Alan Shepard hit a golf ball on the Moon, but it 
didn't travel a kilometer (more like 200-300 m apparently). To Shepard's credit, he was wearing a bulky spacesuit 
and could only swing with one arm.  

Section 3.6 Uniform Circular Motion  

 38. INTERPRET This problem involves uniform circular motion. We are asked to find with what speed a car must 
travel through a curve so that the centripetal acceleration is equal to the magnitude of acceleration due to gravity 
on the surface of the Earth. 
DEVELOP Given the radius and the acceleration (a = g = 9.8 m/s2), we may use Equation 3.16, 2/a v r=  to solve 
for the speed v. 
EVALUATE Using Equation 3.16, the speed of the car is 

( )( )29.8 m/s 75 m 27 m/s 98 km/h 61 mi/hv ar= = = = =  

ASSESS If the radius of the turn is kept fixed, then the only means to attain a higher centripetal acceleration is to 
increase the speed. A centripetal acceleration of 1g is just within the capability of autocross tires.  

 39. INTERPRET This problem asks us to estimate the acceleration of the Moon given its orbital radius and its orbital 
period. Because the Moon’s orbit is nearly circular, we can use the formulas for uniform circular motion. 

DEVELOP For uniform circular motion, the centripetal (i.e., center-seeking) acceleration is given by Equation 
3.16, 2a v r= , where v is the orbital speed and r is the orbital radius. The problem states that r = 3.85 ×105 km 
and that the orbital period T is T = 27 days = 648 h. The orbital speed is the distance covered in one period divided 
by the period, or v = 2πr/T. 

EVALUATE Inserting the given quantities into Equation 3.16, we find 

( )
( ) ( )

22 52 2 6
2 2

22

4 3.85 10 km4 10 mm 1 h
36 km/h 2.8 mm/s

km 3600 s648 h

v ra
r T

ππ × § ·§ ·
= = = = =¨ ¸¨ ¸

© ¹© ¹
 

ASSESS The direction of the acceleration is always towards the center of the Earth. 

 40. INTERPRET We are asked to find the time it takes to complete an orbit, given the centripetal acceleration and the 
radius of the circle. 
DEVELOP The period of the satellite is T = C/v, where C is the circumference of the orbit and v is the orbital 
velocity. Use Equation 3.16, 2a v r=  to find the speed, and C = 2πr for the circumference. The acceleration a is 
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speed change, use 0v v v∆ = −  using the result from part (a). To find the change in direction, take the difference 

between the initial and final angles made by the corresponding velocity vectors with the x axis. 

EVALUATE� (a) The initial velocity is 

( ) ( ) ( ) ( )
0

2
0

ˆ ˆ ˆ ˆ ˆ ˆ33 15 m/s 2.3 3.6 m/s 10 s 10 21 m/s

v v va
t t

v v a t i j i j i j

∆ −= =
∆ ∆

ª º= − ∆ = + − + = −¬ ¼

G G GG

G G G
 

(b) The initial speed is ( ) ( )2 2
0 10 m/s 21 m/s 23.26 m/sv = + =G

 and the final speed is 

( ) ( )2 233 m/s 15 m/s 36.25 m/sv = + = , so the change in speed is 36.25 m/s 23.26 m/s 13 m/sv = − =  to two 

significant figures. 
(c) The intial and final angles are ( )0 atan 21/10 295 64.5θ = − = ° = − °  and ( )atan 15/33 24.4θ = = ° , so the 
difference is ( )0 24.4 64.5 89θ θ θ∆ = − = − − =D D D . 

(d) The magnitude of the acceleration is ( ) ( )2 22 2 22.3 m/s 3.6 m/s 4.27 m/sa = + = . Multiplying this by the time 

interval ∆t = 10 s gives 47.2 m/sat =  which is not the same as the change in speed from part (b). The reason for 

this may be seen from the figure below. The change in speed is just the difference in the lengths of the vectors vG  
and 0v

G
. It does not depend on the angle between these two vectors. However, the magnitude of the change in 

velocity is the length of the vector a t∆G , which does depends on the angle between the initial and final velocities. 
Only if this angle is zero are the two quantities the same. 

v

a !t

-v0
r

r

r–

 

ASSESS This problem demonstrates the importance of the vector direction in determining physical quantities.  

 49. INTERPRET In this problem we have to find the average velocity and acceleration by taking the difference in the 
position vector and the velocity vector, and then dividing by the time. 
DEVELOP Let's choose a coordinate system with origin at the center of the Ferris wheel, so that the position vector 
always has a magnitude of 1

2 150 m 75 mr = = . The speed is the circumference divided by the rotational period: 
2 75m /30min 0.262 m/sv π= ⋅ = . Let's take the initial position to be at the lowest point, i.e., 0

ˆ75  mr j= −G
, and 

we'll assume the wheel moves counterclockwise, such that 0
ˆ0.262  m/sv i=G . After 5.0 mint∆ = , the wheel will 

have completed 1/6th of its rotation, meaning it will have advanced by o60 . The final position will be o30−  from 
the x direction, while the final velocity will be o60 from the x direction. See the figure below.  

Note: full credit if you did not get correct answer for acceleration.3-18 Chapter 3 
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60°

60°

v0

r0

r

r

r

r

vr

 
In component form, the final position and velocity are 

 
( ) ( )
( ) ( )

o o

o o

ˆ ˆ ˆ ˆcos 30 sin 30 65.0 37.5  m

ˆ ˆ ˆ ˆcos 60 sin 60 0.131 0.227  m/s

r r i r j i j

v v i v j i j

= − + − = −

= + = +

G

G  

EVALUATE (a) The average velocity is change in position divided by the time:  

( ) ( )ˆ ˆ ˆ65.0 37.5  m 75  m
ˆ ˆ0.22 0.13  m/s

5.0 min

i j jrv i j
t

− − −∆= = = +
∆

GG  

(b) The average acceleration is change in velocity divided by the time: 

( ) ( ) ( ) 4 2
ˆ ˆ ˆ0.131 0.227  m/s 0.262  m/s

ˆ ˆ4.4 7.6 10 m/s
5.0 min

i j iva i j
t

−
+ −∆= = = − + ×

∆

GG  

ASSESS The magnitude of the average velocity is 0.25 m/s, which is nearly the same as the instantaneous velocity 
of 0.26 m/s. The average velocity is smaller because it doesn't take into account the curved path followed by a 
point on the rim of the wheel.  

 50. INTERPRET This is a problem of relative velocities. The ferryboat has to head upstream slightly to compensate 
for the current that drags it downstream.  
DEVELOP The river velocity V

G
 and the ferryboat velocity v′G  with respect to the water are two sides of a right 

triangle (see the figure in the solution to Exercise 3.27), where the third side is the velocity of the boat relative to 
the ground.  

EVALUATE (a) The angle that the boat must head is given by 

 1sin V
v

θ − § ·= ¨ ¸′© ¹
 

(b) If V  were greater than v′ , then there would be no solution for the angle (since sin 1θ ≤ ). What this means is 
that the river is flowing too fast for the ferryboat to be able to get straight across. 

ASSESS If V v′= , there's no real solution, since that would mean o90θ = . At that heading (straight upstream), the 
ferryboat would not be moving towards the other side of the river. It would be motionless relative to the ground.  

 51. INTERPRET This problem is an exercise in vector addition. We are asked to compare the magnitude of two 
vectors given that their sum is perpendicular to their difference.  

DEVELOP Use Equation 3.1 to express vector A
G

 in component form: ˆ ˆ
x yA A i A j= +

G
 where 2 2

x yA A A= +  and 

( )atanA y xA Aθ = . Similarly, express vector B
G

 as ˆ ˆ
x yB B i B j= +

G
. Let C

G
 be the sum of the two vectors: 

( ) ( )ˆ ˆ ˆ ˆ
x x y y x yC A B A B i A B j C i C j= + = + + + = +

G G G
 

and D
G

be the difference of the two vectors:  
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Inserting the time t and the vertical velocity vy0 just calculated into Equation 3.12 gives an initial horizontal 
velocity of 

( ) ( )( )
0 0

2
0

0 0
0

9.8 m/s 6.68 m
6.36 m/s

10.30 m/s

x

x
y

x x v t

x x gv x x
t v

− =

§ ·−= = − = ± =¨ ¸¨ ¸
© ¹

 

Thus, the initial velocity of the bar must be 

( ) ( )0 0 0
ˆ ˆ ˆ ˆ6.4 m/s 10 m/sx yv v i v j i j= + = +G

 

where the result is reported to two significant figures. 
ASSESS The initial velocity may also be described by its magnitude and direction, which are 

( ) ( )2 22 2
0 0 0

0
0

0

6.36 m/s 10.30 m/s 12 m/s

10.30 m/satan atan 58
6.36 m/s

x y

y

x

v v v

v
v

θ

= + = + =

§ · § ·
= = =¨ ¸ ¨ ¸

© ¹© ¹
D

 

Notice that 58° > 39°, which is reasonable because you must throw the bar at an angle greater than the slope, or 
you will be throwing it into the slope. 

 63. INTERPRET This problem involves projectile motion. We are asked to prove that a projectile launched on level 
ground reaches its maximum height midway along its trajectory. 
DEVELOP The total flight time can be found by using Equation 3.13, 21

0 0 2yy y v t gt= + − and setting y = y0 
because the problem states that we are on level ground. Similarly, to find the time it takes for the projectile to reach 
its maximum height ymax note that vy = 0 at ymax and apply Equation 3.11, 0y yv v gt= − . 
EVALUATE From Equation 3.13, the total flight time is  

2
0 0 tot tot

0
tot

10
2

2

y

y

y y v t gt

v
t

g

− = = −

=
 

Solving Equation 3.11 for the time tƍ it takes to reach ymax, we obtain 

0

0

0y y

y

v v gt
v

t
g

′= = −

′ =
 

Comparing the two expressions, we see that tot 2t t′= . Thus, a projectile launched on level ground reaches its 
maximum height at a time that is one-half the total trajectory time, or at midway along its trajectory. 
ASSESS The result shows that the time of ascent is equal to the time of descent, as expected. An alternative proof 
may be done by differentiating Equation 3.14 with respect to x: 

( ) ( ) ( ) ( )
2

0 02 2 2 2
0 0 0 0

tan tan
2 cos cos

dy d g gx x x
dx dx v v

θ θ
θ θ

§ ·
= − = −¨ ¸¨ ¸

© ¹
 

Because the maximum height (ymax) occurs when this derivative is zero, we find that ymax occurs when 
( ) ( ) ( )2 2 2

0 0 0 0 0cos tan sin 2x v g v gθ θ θ= = . This result is precisely half the x range (see Equation 3.15). 

 64. INTERPRET This problem involves projectile motion. We are asked to express the maximum horizontal range in 
terms of the angle at which a projectile is launched and the maximum height it attains. 
DEVELOP  The expression for the horizontal range (when the initial and final heights are equal) is ( )2

0 02 sinx v θ=  
(Equation 3.15). The maximum height h = y max – y0 can be found from Equation 2.11, ( )2 2

0 max 02y yv v g y y= − − , 
with v = 0, which gives 0 2yv gh= . If you draw a picture of the initial velocity vector and its components (see 
figure below), it becomes apparent that ( )0 0cos xv vθ = , ( )0 0sin yv vθ = , and ( )0 0 0tan y xv vθ = . 
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v0

u0

vy0

vx0  
Therefore, from the equation just before Equation 3.15, we have ( ) ( ) ( )2

0 0 0 0 02 sin cos 2 x yx v g v v gθ θ= = . 
Combine these equations to solve the problem. 

EVALUATE Inserting ( )0 0 0tan y xv vθ =  and 0 2yv gh=  into the last expression from above for x gives 

( ) ( )
2

0 0 0

0 0

2 2 4
tan tan

x yv v v hx
g g θ θ

= = =  

ASSESS This result reflects a classical geometrical property of the parabola, namely, that the latus rectum is four 
times the distance from vertex to focus.  

 65. INTERPRET This problem involves projectile motion. You are asked to estimate the initial horizontal speed of the 
motorcyclist given the range over which he flew. 
DEVELOP Imagine the motorcyclist is traveling at the legal speed, 60 km/h = 16.67 m/s. If we find that his range 
is less than the 39 m reported, we can conclude that he was probably not speeding. If his range is greater than 39 
m, then he was probably speeding. Assume that he is deflected upwards off the car’s windshield (which we 
consider to be a frictionless surface), at 45°, which will maximize his range. We can then use Equation 3.15 to find 
the range over which he would travel before landing on the road.  
EVALUATE�  Inserting the intial speed and angle into Equation 3.15 gives 

( ) ( ) ( )2
2
0

0 2

16.67 m/s sin 90
sin 2 28 m

9.8 m/s
vx
g

θ= = =
D

 

Because of our assumptions, this would be the motorcyclist’s maximum range. The fact that he flew 39 m before 
landing implies that he was almost certainly speeding. 
ASSESS To estimate the minimum speed at which he was traveling, insert the range of x = 39 m into Equation 
3.15 and solve for the initial velocity v0 (again assuming θ0 = 45°). This gives  

( )

( )
( )( )

( ) ( )

2
0

0

2

0 3
0

sin 2

39 m 9.8 m/s 1 km 3600 s19.56 m/s 70 km/h
sin 2 10 m 1 hsin 90

vx
g

xgv

θ

θ

=

§ ·§ ·
= ± = ± = =¨ ¸¨ ¸

© ¹© ¹
D

 

 66. INTERPRET We will be comparing the horizontal range of two trajectories that differ in their initial angle.  
DEVELOP From Equation 3.15, the range is 2

0 0sin 2 /x v gθ= . We will show that the sine of o
0 45θ α= +  is 

equivalent to the sine of o
0 45θ α= − . 

EVALUATE The trigonometric identity in Appendix A for the sine of the sum of two angles shows that 

 ( ) ( )o o o osin 2 45 sin 90 2 sin90 cos2 cos90 sin2  cos2α α α α α± = ± = ± =  

where we have used the fact that osin90 1=  and ocos90 0= . The horizontal range formula, therefore, gives the 
same range for either launch angle, assuming the same initial speed. 

ASSESS As in problem 3.61, we can define the different velocity components as ( )o
0 cos 45xv v α± = ±  and 

( )o
0 sin 45yv v α± = ± . The "+" projectile has less horizontal velocity ( 0 0x xv v+ −< ), but it is shot up higher ( 0 0y yv v+ −> ), 

so it will be in the air longer ( t t+ −> ). These two effects balance each other out to give the same range 
( 0 0x xx v t v t+ + − −= = ) . 
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v0

u0

vy0

vx0  
Therefore, from the equation just before Equation 3.15, we have ( ) ( ) ( )2

0 0 0 0 02 sin cos 2 x yx v g v v gθ θ= = . 
Combine these equations to solve the problem. 

EVALUATE Inserting ( )0 0 0tan y xv vθ =  and 0 2yv gh=  into the last expression from above for x gives 

( ) ( )
2

0 0 0

0 0

2 2 4
tan tan

x yv v v hx
g g θ θ

= = =  

ASSESS This result reflects a classical geometrical property of the parabola, namely, that the latus rectum is four 
times the distance from vertex to focus.  

 65. INTERPRET This problem involves projectile motion. You are asked to estimate the initial horizontal speed of the 
motorcyclist given the range over which he flew. 
DEVELOP Imagine the motorcyclist is traveling at the legal speed, 60 km/h = 16.67 m/s. If we find that his range 
is less than the 39 m reported, we can conclude that he was probably not speeding. If his range is greater than 39 
m, then he was probably speeding. Assume that he is deflected upwards off the car’s windshield (which we 
consider to be a frictionless surface), at 45°, which will maximize his range. We can then use Equation 3.15 to find 
the range over which he would travel before landing on the road.  
EVALUATE�  Inserting the intial speed and angle into Equation 3.15 gives 

( ) ( ) ( )2
2
0

0 2

16.67 m/s sin 90
sin 2 28 m

9.8 m/s
vx
g

θ= = =
D

 

Because of our assumptions, this would be the motorcyclist’s maximum range. The fact that he flew 39 m before 
landing implies that he was almost certainly speeding. 
ASSESS To estimate the minimum speed at which he was traveling, insert the range of x = 39 m into Equation 
3.15 and solve for the initial velocity v0 (again assuming θ0 = 45°). This gives  

( )

( )
( )( )

( ) ( )

2
0

0

2

0 3
0

sin 2

39 m 9.8 m/s 1 km 3600 s19.56 m/s 70 km/h
sin 2 10 m 1 hsin 90

vx
g

xgv

θ

θ

=

§ ·§ ·
= ± = ± = =¨ ¸¨ ¸

© ¹© ¹
D

 

 66. INTERPRET We will be comparing the horizontal range of two trajectories that differ in their initial angle.  
DEVELOP From Equation 3.15, the range is 2

0 0sin 2 /x v gθ= . We will show that the sine of o
0 45θ α= +  is 

equivalent to the sine of o
0 45θ α= − . 

EVALUATE The trigonometric identity in Appendix A for the sine of the sum of two angles shows that 

 ( ) ( )o o o osin 2 45 sin 90 2 sin90 cos2 cos90 sin2  cos2α α α α α± = ± = ± =  

where we have used the fact that osin90 1=  and ocos90 0= . The horizontal range formula, therefore, gives the 
same range for either launch angle, assuming the same initial speed. 

ASSESS As in problem 3.61, we can define the different velocity components as ( )o
0 cos 45xv v α± = ±  and 

( )o
0 sin 45yv v α± = ± . The "+" projectile has less horizontal velocity ( 0 0x xv v+ −< ), but it is shot up higher ( 0 0y yv v+ −> ), 

so it will be in the air longer ( t t+ −> ). These two effects balance each other out to give the same range 
( 0 0x xx v t v t+ + − −= = ) . 
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DEVELOP The trajectory Equation 3.14 is 

( )
2

0 2 2
0 0

tan
2 cos

gy x x
v

θ
θ

= −  

Use the derivative with respect to x to find the direction of the slope (tanθ = dy/dx). If we think of the derivative as 
a fraction, the numerator corresponds to the y component of the velocity, and the denominator corresponds to the x 
component. The ratio (i.e., slope) that we find should match Equations 3.10(vx = vx0) and 3.11 (vy = vy0 •  gt).  
EVALUATE Differentiating Equation 3.14 gives  

( ) ( )
( )
( ) ( )

( ) ( )
( )

2
0 0 0 0

0 2 2 2 2 2 2
0 0 0 0 0 0 0

sin sin cos
tan

cos cos cos cos
v gxdy g gxx

dx v v v
θ θ θ

θ
θ θ θ θ

−
= − = − =  

The initial components of velocity are ( )0 0 0cosxv v θ=  and ( )0 0 0sinxv v θ= , which we insert into the above 
expression for dy/dx to obtain 

( ) ( )
( )

0 0 0 0 0 0 0 0
2 2 2
0 0 0 0

sin cos
cos

y x y x

x x

v v gx v v gx v gx vdy
dx v v v

θ θ
θ

ª º ª º − − −¬ ¼ ¬ ¼= = =  

Distance divided by velocity is time, so x/vx0 = t. Inserting this into the expression above gives 

0

0

y

x

v gtdy
dx v

−
=  

Comparing this result with Equations 3.10 and 3.11, we see that the numerator is vy and the denominator is vx. 
ASSESS Note that dy/dx is not the velocity itself, but it is a dimensionless ratio that is the same as the 
dimensionless ratio tanθ = vx/vy. 

 78. INTERPRET This problem asks you to find the initial angle, 0θ , that gives the maximum range, x, for the 
trebuchet.  
DEVELOP The general case of a projectile launched with speed 0v  from a height h  is tackled in Problem 3.79. As 
this is a rather complicated derivation, we will not reproduce it here, but instead use the result: 

1 1
max 22

0

1cos
1 /v gh

θ − § ·
= ¨ ¸+© ¹

 

EVALUATE Plugging in the launching speed and height of the cliff:  

 
( ) ( )( )

1 1 o
max 22 2

1cos 34
1 36 m/s / 9.8 m/s 75 m

θ −
§ ·
¨ ¸= =
¨ ¸+© ¹

 

ASSESS We can plug 0 maxθ θ=  and y h= −  into Equation 3.14: 

 ( ) ( )
( )

2
o 2

2 2 o

9.8 m/s
75 m tan34

2 36 m/s cos 34
x x− = −  

Using the quadratic formula, we find a range of 190 mx ≈ . If we instead had chosen o
0 45θ = , the range would 

have been slightly smaller, 180 mx ≈ . 

 79. INTERPRET This problem asks you to find the initial angle, 0θ , that gives the maximum range, x, for a projectile 
launched with speed 0v  from a height h . Recall that the maximum occurs when the derivate, 0/dx dθ , is zero. 
DEVELOP We need to find an equation that relates x and 0θ . Let's assume the projectile is launched from the 
origin, so that it lands at a vertical position of y h= − . We can find the range from Equation 3.14,  

 2
0 2 2

0 0

tan
2 cos

gy h x x
v

θ
θ

= − = −  

Let's rearrange this equation by multiplying through by 2
0cos θ  and defining 2

0 / 2H v g=  (which is the maximum 

height of the stone's trajectory using Equation 2.11) 

Note: full credit for attempting #78.
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DEVELOP The trajectory Equation 3.14 is 

( )
2

0 2 2
0 0

tan
2 cos

gy x x
v

θ
θ

= −  

Use the derivative with respect to x to find the direction of the slope (tanθ = dy/dx). If we think of the derivative as 
a fraction, the numerator corresponds to the y component of the velocity, and the denominator corresponds to the x 
component. The ratio (i.e., slope) that we find should match Equations 3.10(vx = vx0) and 3.11 (vy = vy0 •  gt).  
EVALUATE Differentiating Equation 3.14 gives  

( ) ( )
( )
( ) ( )

( ) ( )
( )

2
0 0 0 0

0 2 2 2 2 2 2
0 0 0 0 0 0 0

sin sin cos
tan

cos cos cos cos
v gxdy g gxx

dx v v v
θ θ θ

θ
θ θ θ θ

−
= − = − =  

The initial components of velocity are ( )0 0 0cosxv v θ=  and ( )0 0 0sinxv v θ= , which we insert into the above 
expression for dy/dx to obtain 

( ) ( )
( )

0 0 0 0 0 0 0 0
2 2 2
0 0 0 0

sin cos
cos

y x y x

x x

v v gx v v gx v gx vdy
dx v v v

θ θ
θ

ª º ª º − − −¬ ¼ ¬ ¼= = =  

Distance divided by velocity is time, so x/vx0 = t. Inserting this into the expression above gives 

0

0

y

x

v gtdy
dx v

−
=  

Comparing this result with Equations 3.10 and 3.11, we see that the numerator is vy and the denominator is vx. 
ASSESS Note that dy/dx is not the velocity itself, but it is a dimensionless ratio that is the same as the 
dimensionless ratio tanθ = vx/vy. 

 78. INTERPRET This problem asks you to find the initial angle, 0θ , that gives the maximum range, x, for the 
trebuchet.  
DEVELOP The general case of a projectile launched with speed 0v  from a height h  is tackled in Problem 3.79. As 
this is a rather complicated derivation, we will not reproduce it here, but instead use the result: 

1 1
max 22

0

1cos
1 /v gh

θ − § ·
= ¨ ¸+© ¹

 

EVALUATE Plugging in the launching speed and height of the cliff:  

 
( ) ( )( )

1 1 o
max 22 2

1cos 34
1 36 m/s / 9.8 m/s 75 m

θ −
§ ·
¨ ¸= =
¨ ¸+© ¹

 

ASSESS We can plug 0 maxθ θ=  and y h= −  into Equation 3.14: 

 ( ) ( )
( )

2
o 2

2 2 o

9.8 m/s
75 m tan34

2 36 m/s cos 34
x x− = −  

Using the quadratic formula, we find a range of 190 mx ≈ . If we instead had chosen o
0 45θ = , the range would 

have been slightly smaller, 180 mx ≈ . 

 79. INTERPRET This problem asks you to find the initial angle, 0θ , that gives the maximum range, x, for a projectile 
launched with speed 0v  from a height h . Recall that the maximum occurs when the derivate, 0/dx dθ , is zero. 
DEVELOP We need to find an equation that relates x and 0θ . Let's assume the projectile is launched from the 
origin, so that it lands at a vertical position of y h= − . We can find the range from Equation 3.14,  

 2
0 2 2

0 0

tan
2 cos

gy h x x
v

θ
θ

= − = −  

Let's rearrange this equation by multiplying through by 2
0cos θ  and defining 2

0 / 2H v g=  (which is the maximum 

height of the stone's trajectory using Equation 2.11) 
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 2 2

0 0 0
4 sin cos 4 cos 0x xH hHθ θ θ− − =  

Now using the trigonometric identities: sin 2 2sin cosθ θ θ=  and 2
cos2 2cos 1θ θ= − , we have 

 ( )2

0 0
2 sin 2 2 cos2 1 0x xH hHθ θ− − + =  

We could solve for x using the quadratic formula, but that will get messy. Instead, we will leave the equation like 

this and take the derivative with respect to 
0

θ . We can then set 
0

/dx dθ  equal to zero and then solve for the angle 

that gives the maximum range. 

EVALUATE In taking the derivative of the above equation, we are careful to apply the chain rule and product rule 
from Appendix A:  

 
0 0 0

0 0

2 2 sin 2 2 cos2 2 2sin 2 0
dx dxx H x hH
d d

θ θ θ
θ θ

ª º
⋅ − ⋅ + − − =ª º« » ¬ ¼

¬ ¼
 

If we then assume 
0

/ 0dx dθ =  for the maximum range, we are left with 

max max max max max
4 cos2 4 sin 2 0    tanHx hH x hθ θ θ− − = → =  

where 
max

θ is the angle that gives the maximum range, 
max
x . Notice that o

max
45θ =  is undefined except for 0h = , 

which would be the normal case of a trajectory over level ground (see Equation 3.75). To solve for 
max

θ  generally, 

we plug it and the expression for 
max
x  into the trajectory equation that we derived above: 

 
( )

( )
2 2

max max max max

2 2 2

max max max max max

tan 2 2 tan 2 sin 2 2 cos2 1 0

sin 2 2 sin 2 cos2 2 cos 2 cos2 1 0

h hH hH

h H H

θ θ θ θ
θ θ θ θ θ

− − + =

− − + =
 

Using the fact that ( )( )2 2
sin 1 cos 1 cos 1 cosα α α α= − = − + , the above equation reduces to:  

 
max

1
cos2

1 2 /H h
θ =

+
 

Or equivalently 

 1 1

max 22

0

1
cos

1 /v gh
θ − § ·

= ¨ ¸+© ¹
 

ASSESS If we assume the ground is level ( 0h = ), then the argument in the 1
cos

−  function goes to zero, which 
means o

max
45θ = , as it should when the trajectory is over level ground. 

 80. INTERPRET In the first part, we are asked to show that for circular motion the given equation tells us the position. 
Next, we find the angle between the position vector and the x axis. Finally, we use the second derivative to find the 
equation for centripetal acceleration. 
DEVELOP We draw a diagram of the motion first, as shown in the figure.  

 

From the diagram we can see the position vector and its components. To relate θ  to time t and period T, we use 

the definition of speed distance

time
v = . Finally, we can use derivatives, twice, to obtain the acceleration since 

2

2

d d
dt dt

a v r= =G G G
. But note that the unit vectors î  and ĵ  are constants that do not change with time.  
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 FORCE AND MOTION 

EXERCISES 

Section 4.2 Newton’s First and Second Laws 

 12. INTERPRET This problem involves the application of Newton’s second law. The object under consideration is the 
train and the physical quantity of interest is the net force acting on the train. 
DEVELOP The net force can be found by using Equation 4.3, net .F ma=

G G
 

EVALUATE Using Equation 4.3, the magnitude of the force acting on the train is found to be  

( )( )6 2 6
net 1.5 10  kg 2.5 m/s 3.8 10  NF ma= = × = ×  

ASSESS The result is reasonable, since by definition, one newton is the force required to accelerate a 1-kg mass at 
the rate of 1 m/s2. 

 13. INTERPRET This problem involves Newton's 2nd law for a locomotive with different loads. 
DEVELOP By Equation 4.3, the locomotive accelerates due to the force: /a F m= . 
EVALUATE (a) The mass in this case is just the locomotive itself 

 
5

2
3

(1.2 10  N) 2.0 m/s
61 10  kg

a ×= =
×

 

(b) If the locomotive is pulling a train then the mass is the sum  

 ( ) ( )
5

2
3 6

(1.2 10  N) 0.082 m/s
61 10  kg 1.4 10  kg

a ×= =
× + ×

 

ASSESS These seem like reasonable accelerations. The locomotive by itself could reach 60 mi/h in 13 s, but 
pulling the train it would take over 5 and a half minutes to reach this speed. 

 14. INTERPRET We interpret this as a problem involving the application of Newton’s second law. The object under 
consideration is the airplane and the physical quantity of interest is the plane’s mass. 
DEVELOP We shall assume that the runway is horizontal (so that the vertical force of gravity and the normal force 
of the surface cancel) and neglect aerodynamic forces (which are small just after the plane begins to move). Then 
the net force equals the engine’s thrust and is parallel to the acceleration. The plane’s mass can be found by using 
Equation 4.3, net .F ma=

G G
 

EVALUATE Using Equation 4.3, the mass of the plane is found to be 

 
4

3net
2

1.1 10  N 1.53 10  kg
7.2 m/s

Fm
a

×= = = ×  

ASSESS First, the units are consistent since 21 N 1 kg m/s .= ⋅  The result is reasonable, since by definition, one 
newton is the force required to accelerate a 1-kg mass at the rate of 1 m/s2. 

 15. INTERPRET This problem involves Newton’s second law. The object of interest is the passenger, and we are to 
calculate the force required to stop the passenger in the given time.  

4 
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DEVELOP Assume that the seatbelt holds the passenger firmly to the seat, so that the passenger also stops in 0.14 
s without incurring any secondary impact. The passenger’s average acceleration is av 0(0 )/a v t= −  and his mass is 
60 kg. Insert these quantities into Newton’s second law to find the force. 
EVALUATE The average force exerted by the seatbelt on the passenger is 

 
( ) ( )av av 0

60 kg 1000 m 1 h/ 110 km/h 13 kN
0.14 s km 3600 s

F ma mv t
§ ·§ ·= = − = − = −¨ ¸¨ ¸

© ¹© ¹
 

ASSESS The negative sign indicates that the force is opposite to the direction of the initial velocity.  

 16. INTERPRET This problem involves Newton’s second law and kinematics, with which we need to find the 
relationship between force and stopping distance.  
DEVELOP From Equation 4.3, we see that the net force on a car of given mass is proportional to the acceleration, 

netF a∝ . We can then relate the three quantities, displacement, velocity, and acceleration, by Equation 2.11, 

( )2 2
0 02v v a x x= + − . 

EVALUATE To stop a car in a distance x í x0, the acceleration is 
2 2 2

0 0

0 02( ) 2( )
v v va
x x x x

− −= =
− −

 

Therefore, we see that 2
net 0F v∝ , so doubling v0 quadruples the magnitude of net .F  

ASSESS The conclusion that 2
net 0F v∝  is an important fact to remember when driving at high speeds. 

 17. INTERPRET This problem involves Newton's 2nd law for constant mass. 
DEVELOP By Equation 4.3, the kinesin force imparts an acceleration on the molecular complex of /a F m= .  
EVALUATE Recall from Appendix B that the SI prefix pico (p) corresponds to 1210− , so  

 
12

6 2
18

6.0 10 N 2.0 10 m/s
3.0 10 kg

Fa
m

−

−
×= = = ×
×

 

ASSESS This is an extraordinarily large acceleration, but it would only be applied for a fraction of a second, so the 
final velocity would be reasonable. 

 18. INTERPRET This problem involves Newton’s second law and kinematics. We want to find the force required to 
accelerate a car to cover a certain distance within a given time interval.  
DEVELOP The displacement of the car as a function of time is given by Equation 2.10, 

21
0 0 2x x v t at= + + . The equation can be used to solve for the acceleration a. Also, from Newton’s second law, we 

see that the net force on a car of given mass is proportional to the acceleration, net .F a∝  
EVALUATE Using Equation 2.10 with v0 = 0, the acceleration of the car is 

( ) ( )
( )

0 2
22

2 2 400 m
32.6 m/s

4.95 s

x x
a

t
−

= = =  

Newton’s second law gives the average net force on the car as  

( )( )2 4
net 940 kg 32.6 m/s 3 10  NF ma= = = ×  

to a single significant figure. The force acts in the direction of the motion. 
ASSESS Our answer for the acceleration a can be checked by using other kinematic equations. The speed of the 
car after 4.95 s is ( )( )232.6 m/s 4.95 s 161 m/sv at= = = . Using Equation 2.11, ( )2 2

0 02v v a x x= + −  we find the 
distance traveled to be  

( )
( )

22 2
0

0 2

161 m/s 0
400 m

2 2 32.6 m/s
v vx x
a

−−− = = =  

in agreement with the value given in the problem statement.  

 19. INTERPRET This problem involves Newton’s second law and kinematics. The object of interest is the egg, and 
we are to calculate the minimum stopping distance so that the egg does not experience a force greater than 1.5 N.  
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DEVELOP Assume that the seatbelt holds the passenger firmly to the seat, so that the passenger also stops in 0.14 
s without incurring any secondary impact. The passenger’s average acceleration is av 0(0 )/a v t= −  and his mass is 
60 kg. Insert these quantities into Newton’s second law to find the force. 
EVALUATE The average force exerted by the seatbelt on the passenger is 

 
( ) ( )av av 0

60 kg 1000 m 1 h/ 110 km/h 13 kN
0.14 s km 3600 s

F ma mv t
§ ·§ ·= = − = − = −¨ ¸¨ ¸

© ¹© ¹
 

ASSESS The negative sign indicates that the force is opposite to the direction of the initial velocity.  

 16. INTERPRET This problem involves Newton’s second law and kinematics, with which we need to find the 
relationship between force and stopping distance.  
DEVELOP From Equation 4.3, we see that the net force on a car of given mass is proportional to the acceleration, 

netF a∝ . We can then relate the three quantities, displacement, velocity, and acceleration, by Equation 2.11, 

( )2 2
0 02v v a x x= + − . 

EVALUATE To stop a car in a distance x í x0, the acceleration is 
2 2 2

0 0

0 02( ) 2( )
v v va
x x x x

− −= =
− −

 

Therefore, we see that 2
net 0F v∝ , so doubling v0 quadruples the magnitude of net .F  

ASSESS The conclusion that 2
net 0F v∝  is an important fact to remember when driving at high speeds. 

 17. INTERPRET This problem involves Newton's 2nd law for constant mass. 
DEVELOP By Equation 4.3, the kinesin force imparts an acceleration on the molecular complex of /a F m= .  
EVALUATE Recall from Appendix B that the SI prefix pico (p) corresponds to 1210− , so  

 
12

6 2
18

6.0 10 N 2.0 10 m/s
3.0 10 kg

Fa
m

−

−
×= = = ×
×

 

ASSESS This is an extraordinarily large acceleration, but it would only be applied for a fraction of a second, so the 
final velocity would be reasonable. 

 18. INTERPRET This problem involves Newton’s second law and kinematics. We want to find the force required to 
accelerate a car to cover a certain distance within a given time interval.  
DEVELOP The displacement of the car as a function of time is given by Equation 2.10, 

21
0 0 2x x v t at= + + . The equation can be used to solve for the acceleration a. Also, from Newton’s second law, we 

see that the net force on a car of given mass is proportional to the acceleration, net .F a∝  
EVALUATE Using Equation 2.10 with v0 = 0, the acceleration of the car is 

( ) ( )
( )

0 2
22

2 2 400 m
32.6 m/s

4.95 s

x x
a

t
−

= = =  

Newton’s second law gives the average net force on the car as  

( )( )2 4
net 940 kg 32.6 m/s 3 10  NF ma= = = ×  

to a single significant figure. The force acts in the direction of the motion. 
ASSESS Our answer for the acceleration a can be checked by using other kinematic equations. The speed of the 
car after 4.95 s is ( )( )232.6 m/s 4.95 s 161 m/sv at= = = . Using Equation 2.11, ( )2 2

0 02v v a x x= + −  we find the 
distance traveled to be  

( )
( )

22 2
0

0 2

161 m/s 0
400 m

2 2 32.6 m/s
v vx x
a

−−− = = =  

in agreement with the value given in the problem statement.  

 19. INTERPRET This problem involves Newton’s second law and kinematics. The object of interest is the egg, and 
we are to calculate the minimum stopping distance so that the egg does not experience a force greater than 1.5 N.  
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DEVELOP For the average net force on the egg to not exceed the stated limit, the magnitude of the deceleration 
should satisfy 2

av max/ 1.5 N 0.085 kg 17.6 m/sa F m≤ = = . Insert this acceleration into kinematic Equation 2.11 

( )2 2
0 02v v a x x= + −  to find the minimum stopping distance. 

EVALUATE The minimum stopping distance is 

( )2

0 2

1.2 m/s
0.041 m 4.1 cm

35.3 m/s
x x− ≥ = =   

ASSESS Notice that the units work out to units of distance, as expected. 

 20. INTERPRET We interpret this as a problem involving the application of Newton’s second law. The object under 
consideration is the car and the physical quantity of interest is the bumper deformation to withstand the impact 
force and avoid damage.  

DEVELOP For the force on the bumper not to exceed the stated limit, the magnitude of the deceleration should 

satisfy av maxa F m≤ . The deformation of the bumper can then be calculated from Equation 2.11, 
2 2

0 02 ( )v v a x x= + − . 
EVALUATE From the reasoning above, the magnitude of the maximum acceleration is 

2max
av

65,000N 50 m/s
1300 kg

Fa
m

= = =  

With an initial speed of 0 10 km/h 2.78 m/sv = = , the minimum bumper deformation is 

( )
( )

22 2
0

0 2

|0 2.78 m/s || | 0.0772 m 7.7 cm
2 2 50 m/s
v vx x
a

−−− = = = =  

ASSESS A bumper is typically allowed to deform up to a maximum of 12.5 cm before stopping the car.  

Section 4.4 The Force of Gravity 

 21. INTERPRET This problem involves using Newton’s second law to convert the usual units of acceleration (m/s2) to 
N/kg. We are also asked to explain why it makes sense to express acceleration in N/kg when speaking of mass and 
weight. 
DEVELOP Newton’s second law relates the units of mass (kg), distance (m), time (s), and force (N). Use this to 
solve the problem. 
EVALUATE From Newton’s second law (for constant mass), netF ma=

G G
, we see that force (N) is the same as mass 

(kg) × acceleration (m/s2), which can be expressed mathematically as N = kg·m/s2. This can be rearranged to find 
m/s2 = N/kg. It makes sense to use the units N/kg when speaking of mass and weight because kg is a unit of mass 
and N is a unit of force (i.e., a weight).  

ASSESS An acceleration is thus a mass per unit force. 

 22. INTERPRET This problem involves the acceleration due to gravity. We are to use it to identify the planet on 
which the spaceship has crashed based on the gravitational force experienced. 
DEVELOP If the mass and weight are known, then the gravitational acceleration of the planet can be obtained by 
using Equation 4.5, .w mg=G G

 
EVALUATE The surface gravity of the planet is thus  

2532 N 8.87 m/s
60 kg

wg
m

= = =  

which is precisely the value for Venus in Appendix E. 
ASSESS The gravitational acceleration of Venus is lower than that of the Earth. Therefore, the person’s weight is 
less on Venus. The mass, however, remains unchanged. 

 23. INTERPRET This problem asks us to find the mass of an object whose weight on the Moon corresponds to the 
weight of 35-kg object on the Earth. 
DEVELOP Use Equation 4.5 to find the weight of the block on the Earth. Use the gravitational acceleration gM 
from Appendix E to calculate the mass that corresponds to an object of this weight on the Moon. 4-4 Chapter 4 
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EVALUATE To lift a 35-kg block on Earth requires a force at least equivalent to its weight, which is 

( )( )235 kg 9.8 m/s 343 Nw mg= = = . The same force on the moon could lift a mass 

( ) ( )2
M/ 343 N 1.62 m/s 212 kg 210 kgm w g= = = ≈  to two significant figures. 

ASSESS The weight of a 212-kg object on Earth is ( )( )2212 kg 9.8 m/s 2078 Nw mg= = = , which is a factor g/gM 
= (9.8 m/s2)/(1.62 m/s2) = 6 times more than the weight on the Moon. Thus, you can lift 6 times the mass on the 
Moon than you can on the Earth. 

 24. INTERPRET In this problem we are asked about the actual weight, given the mass, of a cereal box in SI units and 
in ounces.  
DEVELOP In many contexts, the phrase “net weight” actually refers to the mass, rather than the actual weight (as 
in this case). Use Equation 4.5 to find the weight of the cereal, and then convert this to ounces using the conversion 
factor 1 oz = weight of 0.02835 kg = (9.81 m/s2)(0.02835 kg) = 0.2778 N (Appendix C). Recall that 340 g = 0.340 
kg. 
EVALUATE (a) The actual weight (equal to the gravitational force on the object at the surface of the Earth) is  

( )( )20.340 kg 9.81 m/s 3.33 Nw mg= = =  

(b) Using the conversion factor from Appendix C we find the weight in ounces is 

( ) 1 oz
3.33 N 12.0 oz

0.2778 N
w

§ ·
= =¨ ¸

© ¹
 

ASSESS The word “net” in net weight means just the weight of the contents; gross weight includes the weight of 
the container, etc. This may be compared with the use of the word in net force, which means the sum of all the 
forces or the resultant force. A net weight, profit, or other amount is the resultant after all corrections have been 
taken into account. 

 25. INTERPRET This is an exercise in converting between mass and weight. 
DEVELOP The weight on the US side is 10 tons. From Appendix C, we see that 1 ton is equivalent to the weight 
of 908 kg. Use this conversion to translate the given weight into a mass in kg. 
EVALUATE If 1 ton = weight of 908 k, 10 = weight of 9080 kg. Thus, you should specify 9000 kg (to a single 
significant figure) on the Canadian side of the border. 

ASSESS The conversion between mass and weight on Earth is m = w/g. Because the English unit of mass (the slug) 
is rarely used, the direct equivalence between mass in SI units and weight (force) in English units is usually given, as 
in Appendix C. Thus, 10 tons = 2 × 104 lbs is equivalent to the weight of ( )( )4 32 10  lb 0.4536 kg/lb 9 10  kg× = × . 

 26. INTERPRET The problem is to find the weight of an object, given its mass and the magnitude of gravitational 
acceleration. 
DEVELOP If the mass and the gravitational acceleration are known, the weight can be obtained by using Equation 
4.5, w mg=G G

. The gravitational acceleration is smaller the farther one is from the Earth's surface. 
EVALUATE The magnitude of the astronaut's weight on the space station is  

 ( )( )268 kg 0.89 9.8 m/s 590 Nw = ⋅ =  

ASSESS This would be the weight if the astronaut were somehow standing still at the altitude of the space station. 
But in fact, the astronaut is in free fall with the space station, so his/her "weight" is zero. That's because an 
operational definition of weight is the force read on a scale at rest relative to the object being weighed, and the 
astronaut would float above any scale placed on the space station. 

Section 4.5 Using Newton’s Second Law 

 27. INTERPRET This problem involves kinematics with constant velocity and Newton’s second law. We are asked to 
find the force on the parachute due to air drag. The other force involved is the gravitational force. 
DEVELOP From kinematics (see, for example, Equation 3.6) we know that a body moving with constant velocity 
experiences an acceleration of a = 0. Inserting this into Newton’s second law (for constant mass), Fnet = ma, tells us 
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net force is the sum of the forces acting on our passeger, so Fnet = Felev í w (where w = mg), the mass of the passenger 
is m = 52 kg, and her acceleration is a = í2.4 m/s2. 
EVALUATE� Newton’s second law gives 

( )( )

net

elev

2 2
elev 52 kg 9.8 m/s 2.4 m/s 380 N

F ma
F w ma

F mg ma

=
− =

= + = − =

 

ASSESS Because the elevator accelerates downward, it does not need to support the entire weight of the person, 
so the force it applies is slightly less than that necessary to counter the gravitational force on the person. What 
would happen if the elevator accelerated downward at the 9.8 m/s2? At a > 9.8 m/s2?  

 30. INTERPRET We need to use Newton's 2nd law to find the lifting force on the plane. 
DEVELOP There are two forces on the plane: the upward lift provided by the wings and the downward weight 
from gravity: net up netF F mg ma= − = , or solving for the lift: ( )up netF m g a= + . In part (a) the plane holds a 
constant altitude, so the net acceleration and force must be zero. In part (b), the plane is climbing so the 
acceleration is positive.  
EVALUATE (a) When there's no acceleration, the upward force balances the weight: 

 ( ) ( )2 6
up

1000 kg560 t 9.8 m/s 5.5 10 N
1 t

F mg § ·= = = ×¨ ¸
© ¹

 

(b) When the plane climbs at net 1.1 m/sa = ,  

 ( ) ( )2 2 6
up

1000 kg560 t 9.8 m/s 1.1 m/s 6.1 10 N
1 t

F § ·= + = ×¨ ¸
© ¹

 

ASSESS It obviously takes a lot of force to keep a plane that big in the air. The lift of an airplane is proportional to 
its wing area. The Airbus A-380 has a wing area of 845 m2, compared to 541 m2 for a Boeing 747, which has a 
smaller mass of 397 metric tons. 

 31. INTERPRET We assume the rocket's acceleration is constant, so we'll need the equations from Chapter 2, Section 
4. Once we know the acceleration, we can find the force from the rocket engines using Newton's 2nd law. 
DEVELOP The rocket has to go from rest to 7200 km/hv = in 2 min. We can use Equation 2.7 ( 0v v at= + ) to 
find the acceleration. From this we use Equation 4.3 ( F ma= ) to find the force of the rocket and the force on the 
astronaut.  
EVALUATE The rocket accelerates at 

 20 7200 km/h 66.7 m/s
2.0 min

v va
t

−= = =  

To accelerate a load of 630 Mg, the rocket will need a thrust of   

 ( )( )3 2 7630 10 kg 66.7 m/s 4.2 10 NF ma= = × = ×  

During launch, a 75-kg astronaut experiences a force of   

 ( )( )2 375 kg 66.7 m/s 5.0 10 NF ma= = = ×  

ASSESS This is nearly 7 g of acceleration, but astronauts and modern pilots are often trained to handle up to 
around 9 g without losing consciousness. 

 32. INTERPRET This problem involves kinematics (to find the acceleration of the person), Newton’s second law (to 
find forces acting on the person), and Newton’s third law. The forces involved are the gravitational force and the 
normal force exerted by the floor of the elevator on the person’s feet (see free-body diagram from Problem 4.29). 
DEVELOP Because this is a one-dimensional problem, we can dispense with the vector notation, provided we 
assign positive values to upward vectors and negative values to downward vectors. The average acceleration is (see 
Equation 3.5) ( ) ( )2 29.3 m/s 2.1s 4.38 m/sa v t= ∆ ∆ = − = − . The apparent weight wap is simply the force you exert 
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ASSESS The displacement of the Earth is too small to be noticeable; it is about 105 times smaller than the smallest 
physically meaningful distances studied to date! 

 35. INTERPRET� This is a one-dimensional problem that involves calculating a force using Hooke’s law, and applying 
Newton’s third law to find the force necessary to stretch the spring. 
DEVELOP Choose a coordinate system in which the extension of the spring is in the positive x direction. Hooke’s 
law (Equation 4.9) states that a spring will resist compression or extension with a force proportional to the change 
in the spring’s length, or Fsp = íkx, where k is the spring constant an x is the extension (x > 0) or compression (x < 
0) of the spring. We are given k = 270 N/m and x = 48 cm = 0.48 m, so we can use Hooke’s law to solve the 
problem. 
EVALUATE Inserting the given quantities into Hooke’s law gives ( )( )sp 270 N/m 0.48 m 130 NF = − = − . This 
means the spring exerts a force in the negative-x direction of 130 N, so by Newton’s third law, we must apply a 
force Fapp = íFsp = 130 N (i.e., in the positive-x direction). 
ASSESS If we stretch the spring too far, it will permanently deform and Hooke’s law will no longer apply. 

 36. INTERPRET This is a one-dimensional problem that involves Hooke’s law and Newton’s third law. We are asked 
to find the distance a spring with a given spring constant is stretched if we apply a given force to it. 
DEVELOP Choose a coordinate system in which the applied force is in the positive-x direction. Given the spring 
force Fsp and the spring constant k, the length stretched can be calculated by using Hooke’s law (Equations 4.9), 
Fsp = íkx. From Newton’s third law, the force applied has the same magnitude as Fsp, but is oriented in the 
opposite direction, so Fapp = íFsp. The problem states that Fapp = 35 N and k = 220 N/m. 
EVALUATE Inserting the given quantities into Hooke’s law gives 

35 N 0.16 m 16 cm
220 N/m

sp appF F
x

k k
= − = = = =  

ASSESS Notice that the spring is extended in the positive-x direction, as expected if we apply a force in that 
direction. 

 37. INTERPRET This is a one-dimensional problem that involves Hooke’s law and Newton’s third law. We are asked 
to find the distance a spring with a given spring constant is stretched if we apply a given force to it. 
DEVELOP We apply the same reasoning as per Problem 4.36, except that we choose a coordinate system in which 
the applied force is in the negative-x direction. The problem states that k = 340 N/m and the applied force is the 
gravitational force (Equation 4.5) on the fish: Fapp = w = mg = í(6.7 kg)(9.8 m/s2). 
EVALUATE Inserting the given quantities into Hooke’s law gives 

( )( )26.7 N 9.8 m/s
0.19 m 19 cm

340 N/m
sp appF F

x
k k

−
= − = = = − = −  

Thus the spring stretches 19 cm downward. 
ASSESS Notice that the spring is extended in the negative-x direction, as expected if we apply a force in that 
direction. 

PROBLEMS 

 38. INTERPRET This problem involves Newton’s second law and kinematics. We are asked to find the force required 
to accelerate an object a given amount, where the acceleration must be calculated from the given mass, initial 
velocity, and final velocity.  

DEVELOP Draw a diagram of the situation to define a coordinate system (see figure below). Equation 4.2, which 

is Newton’s second law for constant mass ( netF ma=
G G

), states that the average force acting on an object is equal to 

the average acceleration, netF ma=
GG G

. From Equation 3.5 ( )2 1a v t v v t= ∆ ∆ = − ∆G G G G
, we can calculate the average 

acceleration, which we can insert into Newton’s second law to find the force. We are given the initial velocity, 

( )1
ˆ17.4 m/sv i=G  the final velocity, ( ) ( ) ( ) ( ) ( )2

ˆ ˆ ˆ ˆ26.8 m/s cos 34 sin 34 22.2 m/s 15 m/sv i j i jª º= ° + ° = +¬ ¼
G

, the time 

interval ∆t = 3.41 s, and the mass m = 1.25 kg. 
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the magnitude of this acceleration from the fact that the object goes from 0 0y =  to 10.8 my =  in 3.00 s. Since it 
originally only had velocity in the x direction ( 0 0yv = ), Equation 2.10 tells us:  

 ( )0
2

2
y

y y
a

t
−

=  

Evaluate Solving for the unknown force's magnitude 

 ( ) ( )
( )2 1 2

2 10.8 m
2.50 kg 15.0 N 9.0 N

3.00 s
y y yF ma F= − = − = −  

In vector format, our answer is 

 2
ˆ9.0  NF j= −

G
 

ASSESS Because there is no acceleration in the x direction, the velocity in the x direction should be constant 
1.60 m/sxv = . Therefore, over 3.00 st = , the object should move from the origin to 4.80 mxx v t= = , which 

agrees with what is reported in the text. 

 45. INTERPRET This problem deals with interaction between different pairs of objects. The key concepts involved 
here are Newton’s second and third laws. 
DEVELOP Let the three masses be denoted, from left to right, as 1 2 3, , and ,m m m  as shown in the figure below.  

Fapp
r

F12

m1

m2

m3

r
F21
r

F23
r

F32
r

 
We take the right direction to be +x. We are told that the table is frictionless, so the only horizontal forces are the 
applied force and the contact forces between the blocks. For example, 12F

G
 denotes the force exerted by block 1 on 

block 2. Since the blocks are in contact, they all have the same acceleration a, to the right. Newton’s second law 
can be applied to each block separately: 

 
app 21 1

12 32 2

23 3

F F m a

F F m a

F m a

+ =

+ =

=

G G G
G G G

G G
 

EVALUATE Adding all three equations and using Newton’s third law ( 12 21 0,F F+ =
G G

 etc.), one finds 

 app 2

1 2 3

12 N 2.0 m/s (to the right)
1.0kg 2.0kg 3.0kg

F
a

m m m
= = =

+ + + +

G
G  

Thus, the force block 2 exerts on block 3 is   
2

23 3 (3.0 kg)(2.0 m/s ) 6.0 N (to the right)F m a= = =  

ASSESS You might be tempted to assume that the force on block 3 is just the applied force, appF
G

, but from that 
you would wrongly conclude that block 3 is accelerating at 4 m/s2, which would no longer be the same as for the 
other 2 blocks. 

 46. INTERPRET This problem asks us to consider the tension in the handle when the handle and the wagon are 
accelerated. The key concepts involved here are Newton’s second and third laws. 
DEVELOP There are two forces on the handle: the tension from the wagon resisting the motion (we'll call this 1T

G
) 

and the tension from the child's pulling (we'll call this 2T
G

). See the figure below.  
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We'll assume that the only force on the wagon is from the tension in the handle, which we have denoted as 3T

G
. 

Using the second law, the net horizontal force on the handle and wagon are, respectively, 

 net,h 2 1 h

net,w 3 w

F T T m a
F T m a

= − =
= =

 

Where we have assumed that the positive direction is to the right. Since by the third law, 1T
G

 and 3T
G

 are an 
action/reaction pair, 1 wT m a= . Plugging this in above, we have ( )2 w hT m m a= + .  
EVALUATE Solving for the tension on both sides of the handle 

 
( )( )
( )( )

2
1

2
2

11 kg 2.3 m/s 25 N

11 kg 1.8 kg 2.3 m/s 29 N

T

T

= =

= + =
 

These tensions are not equal because if they were, the net force on the handle would be zero and it wouldn't 
accelerate (contrary to what we are told). One can also argue that the 3T - 1T  pair is less than 2T  because the former 
has only has to accelerate the wagon, whereas latter has to accelerate both the wagon and the handle.  
ASSESS Often times physics problems involving a string (or some other force-transferring object) will assume for 
simplicity that the string is massless. Under such an approximation, the tensions on the two ends of the string will 
be equal, since the net force on a massless object is always zero.  

 47. INTERPRET This is a one-dimensional problem that involves Newton’s second and third laws. We are asked to 
find the force applied by the plane, the tension in the ropes, and the net force on the first glider. 
DEVELOP Make a free-body diagram of the situation (see figure below), on which we have noted all the 
horizontal forces, the masses of each object, and the coordinate system where the positive-x direction is to the 
right. Note that we are neglecting the mass of the ropes and any friction forces. From Newton’s third law, we know 
that the third-law force pairs have equal magnitude, but act in opposing directions. Therefore, 1,P P,1T T= −

G G
 and 

2,1 1,2T T= −
G G

.To find the thrust of the propeller, note that the propeller has to accelerate at ( )2 ˆ1.9 m/sa i=G  a total 
mass mT of mT = mP + m2 + m1, which we can insert into Newton’s second law to find the thrust. Applying 
Newton’s second law to the airplane, glider 1, and glider 2 will also allow us to find the tension in the two ropes, 
which will then allow us to find the net force on the first glider. 

m2 = 260 kg

Glider 2 Glider 1 Plane

m1 = 310 kg mp = 2200 kg

î

T1,2 T2,1 TP,1 T1,P Fth
rrrrr

 
EVALUATE (a) The net force on the three-body object is net th 1,P P,1 2,1 1,2 thF F T T T T F= + + + + =

G G G G G G G
, where the last 

equality follows from Newton’s third law. Inserting this into Newton’s second law gives 

( ) ( )( ) ( )
net T

2 3
th 1 2 P

ˆ ˆ2200kg 310kg 260kg 1.9 m/s 5.26 10 N

F m a

F m m m a i i

=

= + + = + + = ×

G G
G G  

(b) Applying Newton’s second law to the airplane gives the tension 1,PT
G

 in the first rope as  

( ) ( )( ) ( )

net P

th 1,P P

2 3
1,P P th 2 1

ˆ ˆ310 kg 260kg 1.9 m/s 1.08 10  N

F m a

F T m a

T m a F m m a i i

=

+ =

= − = + = − + = − ×

G G
G G G

G GG G
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DEVELOP Given the spring force spF  and the spring constant k, the length stretched can be calculated by using 
Hooke’s law in Equation 4.9: spF kx= −  (the negative sign means that the spring force opposes the distortion). The 
spring stretches until the acceleration of both masses is the same.  
EVALUATE The magnitude of the spring tension is given by Hooke’s law, sp | |F k x= , where |x| is the stretch of 
the spring. The horizontal component of Newton’s second law applied to each mass gives  

( )

( )

1
net app sp 3

2
net sp 2

F F F m a

F F m a

= − =

= =
 

as indicated in the sketch below. Adding these two equations, the acceleration of the entire system is 

app 2

2 3

15 N 3.0 m/s
2.0kg 3.0kg

F
a

m m
= = =

+ +
 

The spring force is therefore 

( )( )2
sp 2 2.0kg 3.0 m/s 6.0 NF m a= = =  

Applying Hooke’s law, the spring stretches a distance  

sp 6.0 N| | 0.0429 m 4.3 cm
140 N/m

F
x

k
= = = =  

 Fsp  Fappm3 Fspm2

2 kg 3 kg
15 N

F
→

 
ASSESS The spring force may be rewritten as  

2
sp 2 app

2 3

mF m a F
m m

§ ·
= = ¨ ¸+© ¹

 

In the limit that 2 3m m� , sp appF F≈ . Conversely, if the mass m2 is negligible, then sp 0F ≈ , as expected. 

 51. INTERPRET The problem asks us to determine the crumple zone of a car, in order to keep the stopping force on a 
passenger below a given value. 
DEVELOP We can think of the crumple zone as the distance, x∆ , the car and its passengers continue to travel as 
they go from the initial speed to zero. We can use Equation 2.11 to relate this distance to the deceleration of the 
car,  

 2 2
00 2v v a x= = − ∆  

Note that we have included a negative sign, so that a is a positive quantity. Using Equation 4.3, we can derive  
a limit on the crumple zone from the requirement that the force on the passenger must be less than 20 times  
his/her weight:   

 20     20gF F a g≤ → ≤  

EVALUATE The crumple zone is the distance during the crash over which the car comes to rest, so 2
0 / 2x v a∆ = . 

Using the limit on the acceleration, the crumple zone must be at least 

 ( )
( )

( )
22 2

0 0
2

70 km/h
0.96 m

2 2 20 40 9.8 m/s
v vx
a g

∆ = ≥ = =  

ASSESS This says the car would have to crumple by almost a meter. That's quite a bit, but the pictures of cars in 
high-speed collisions seem to imply that modern cars can compress by this much. 

 52. INTERPRET This is an application of Newton's 2nd law. 
DEVELOP We're given the acceleration of the frog tongue and its mass, so the force needed is just F ma= . 
EVALUATE Plugging in the given values 
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DEVELOP Given the spring force spF  and the spring constant k, the length stretched can be calculated by using 
Hooke’s law in Equation 4.9: spF kx= −  (the negative sign means that the spring force opposes the distortion). The 
spring stretches until the acceleration of both masses is the same.  
EVALUATE The magnitude of the spring tension is given by Hooke’s law, sp | |F k x= , where |x| is the stretch of 
the spring. The horizontal component of Newton’s second law applied to each mass gives  

( )

( )

1
net app sp 3

2
net sp 2

F F F m a

F F m a

= − =

= =
 

as indicated in the sketch below. Adding these two equations, the acceleration of the entire system is 

app 2

2 3

15 N 3.0 m/s
2.0kg 3.0kg

F
a

m m
= = =

+ +
 

The spring force is therefore 

( )( )2
sp 2 2.0kg 3.0 m/s 6.0 NF m a= = =  

Applying Hooke’s law, the spring stretches a distance  

sp 6.0 N| | 0.0429 m 4.3 cm
140 N/m

F
x

k
= = = =  

 Fsp  Fappm3 Fspm2

2 kg 3 kg
15 N

F
→

 
ASSESS The spring force may be rewritten as  

2
sp 2 app

2 3

mF m a F
m m

§ ·
= = ¨ ¸+© ¹

 

In the limit that 2 3m m� , sp appF F≈ . Conversely, if the mass m2 is negligible, then sp 0F ≈ , as expected. 

 51. INTERPRET The problem asks us to determine the crumple zone of a car, in order to keep the stopping force on a 
passenger below a given value. 
DEVELOP We can think of the crumple zone as the distance, x∆ , the car and its passengers continue to travel as 
they go from the initial speed to zero. We can use Equation 2.11 to relate this distance to the deceleration of the 
car,  

 2 2
00 2v v a x= = − ∆  

Note that we have included a negative sign, so that a is a positive quantity. Using Equation 4.3, we can derive  
a limit on the crumple zone from the requirement that the force on the passenger must be less than 20 times  
his/her weight:   

 20     20gF F a g≤ → ≤  

EVALUATE The crumple zone is the distance during the crash over which the car comes to rest, so 2
0 / 2x v a∆ = . 

Using the limit on the acceleration, the crumple zone must be at least 

 ( )
( )

( )
22 2

0 0
2

70 km/h
0.96 m

2 2 20 40 9.8 m/s
v vx
a g

∆ = ≥ = =  

ASSESS This says the car would have to crumple by almost a meter. That's quite a bit, but the pictures of cars in 
high-speed collisions seem to imply that modern cars can compress by this much. 

 52. INTERPRET This is an application of Newton's 2nd law. 
DEVELOP We're given the acceleration of the frog tongue and its mass, so the force needed is just F ma= . 
EVALUATE Plugging in the given values 
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 ( )( )6 2500 10 kg 250 m/s 0.13 NF ma −= = × =  

ASSESS This is a reasonable amount of force to expect from a frog. The acceleration is so large because the frog's 
tongue has such a small mass. 

 53. INTERPRET� This problem involves applying Hooke’s law to a spring and applying Newton’s second law to the 
two-block system that is connected by the spring. We are asked to find the horizontal force applied to the system 
given the compression of the spring. 
DEVELOP Make a free-body diagram of the situation (see figure below). Because the problem is one-
dimensional, we will forego the vector notation until the end. From Hooke’s law (Equation 4.9) we know that the 
magnitude of the force exerted on each block by the spring is spF k x= , where k = 8.1 kN = 8100 N and |x| = 5.1 
cm = 0.051 m. Apply Newton’s second law to both blocks and solve for the applied force. 

m1 = 640 kg m2 = 490 kg

(1)
î

Fsp
(2)FspFapp

r r r

 
EVALUATE Applying Newton’s second law to both blocks gives 

( )

( )

1
net app sp 1

2
net sp 2

F F F m a

F F m a

= − =

= =
 

Solving this, with the help of Hooke’s law, for the applied force gives  

( )( )sp 1 2
app sp 1

2 2

640 m 490 m8100 N/m 0.051 m 950 N
490 m

F m mF F m k x
m m

§ · § · § ·+ += + = = =¨ ¸ ¨ ¸ ¨ ¸
© ¹© ¹ © ¹

 

This force is applied in the direction indicated in the free-boy diagram, so ( )app
ˆ950 N .F i=

G
 

ASSESS� Does the result make sense in the limiting situations? Letting 2 1m m=  gives app sp2F F= , which makes 

sense because the applied force has to accelerate both blocks, whereas the spring only accelerates a single block. If 

2 0m → , then from equations above resulting from Newton’s second law, we see that Fapp = m1a, as expected. 

Finally, if 2 1m m� , then Fapp = Fsp = m2a, which is reasonable if m1 is very small. 

 54. INTERPRET The problem involves finding the force exerted on the air by the blade of a helicopter under various 
conditions. The key concept involved here is Newton’s third law. 
DEVELOP We're asked for the force that the helicopter exerts on the air, h aF → . But by Newton’s third law, this is 
equal and opposite to the force that the air exerts on the helicopter, a hF → , which is an upward force called the 
engine’s thrust. If we neglect air resistance, the thrust and gravity are the only vertical forces acting on the 
helicopter, so Newton’s second law for the helicopter (positive component up) is: a hF mg ma→ − = . Therefore, the 
helicopter exerts a downward force on the air of 

 h a a h ( )F F m g a→ →= − = − +  

We'll guard the negative sign to remind us that this force is downward. 
EVALUATE (a) Hovering means zero acceleration, 0a =  (also 0v = , but the velocity doesn’t enter the equation 
of motion if air resistance is neglected). Therefore, the downward force on the air is 

 2
h a (4300 kg)(9.8 m/s ) 42 kNF mg→ = − = − = −  

(b) If v is decreasing downward, then the acceleration must be 23.2 m/sa =  upward, and 
 2 2

h a ( ) (4300 kg)(9.8 m/s 3.2 m/s ) 56 kNF m g a→ = − + = − + = −  

(c) In this case, the acceleration a is the same as in part (b), 23.2 m/sa =  upward, so h a 56 kNF → = −  as before. 
(d) If the speed v is constant, then 0a =  as the hovering case in part (a), so h a 42 kNF → = −  as before. 
(e) If v is decreasing upward, then the acceleration points downward:  23.2 m/sa = − , and  
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 2 2
h a ( ) (4300 kg)(9.8 m/s 3.2 m/s ) 28 kNF m g a→ = − + = − − = −  

ASSESS The thrust force from the engine is greatest when the helicopter is either moving upward and accelerating, or 
moving downward and decelerating. In this case, the magnitude of the force exerted on the air is also the greatest, 
by Newton’s third law. 

 55. INTERPRET� This problem involves applying Newton’s second law to the spacecraft to find the thrust force 
required to achieve the various accelerations. 
DEVELOP Draw free-body diagrams of the different situations (see figure below), and apply Newton’s second 
law in each situation to find the requisite thrust. Note that the positive-x direction is upward away from the surface 
of the Earth. For parts (a) and (b), the weight of the rocket is w = mg (see Equation 4.5). For part (c), the weight of 
the rocket is w = 0 because the rocket is in a zero-gravity environment. 

Fth

(a) (b) (c)

r

wr

Fth
rFth

r

wrî

 
EVALUATE� (a) For the rocket accelerating toward the Earth, Newton’s second law gives 

( ) ( )
net th

th
ˆ ˆ

F w F ma

F ma w ma mg i m a gi

= + =

= − = − − = +

G GG G
G G G G G  

for this part, ( ) ˆ1.40a g i= −G
, so 

( ) ( )th
ˆ ˆ1.40 0.40F m g g i mg i= − + = −

G
 

(b) For this part, ( ) ˆ1.40a g i=G , so 

( ) ( )th
ˆ ˆ1.40 2.40F m g g i mg i= + =

G
 

(c) For this part, w = 0 and ˆ1.40a gi=G , so  

( )th
ˆ1.40F ma mg i= =

G G
 

ASSESS Notice that for part (c), the direction of the acceleration is in the direction of the force, because there are 
no other forces (i.e., gravity) to modify the direction of the acceleration. Therefore, the choice of î  as the direction 
of the force is arbitrary. To be completely general, we could have written  

( )1.40 th
th

th

FF mg
F

=
G

 

where the last factor is simply the unit vector in the direction of the thrust force. 

 56. INTERPRET You are asked to find out how many passengers an elevator can accommodate within the guideline 
of safety standards. The forces involved here are the downward gravitational force gF

G
 and the upward cable 

tension T
G

.  
DEVELOP Assume that the only forces involved are gF

G
 and T

G
 in the vertical direction. Newton’s second law 

gives net gF T F Ma= + =
G G G G

, where M is the total mass of the elevator and its passengers. Taking +y to point upward, 
the equation in component form is yT Mg Ma− = , which implies the total mass is  

 ( )yT M g a= +  

The tension is greatest when the elevator is accelerating upward ( 0ya > ). 
EVALUATE For safety’s sake, we require that Force and Motion  4-17 
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 ( )2
max3

2 19.5 kN 13.0 kN
3

T T≤ = =  

Assuming the elevator is accelerating upward at its maximum rate ( 22.24 m/sya = ), the total mass is limited to   

 2 2

13.0 kN 1080kg
9.8 m/s 2.24 m/sy

TM
g a

= ≤ =
+ +

 

Subtracting the mass of the elevator (490 kg), the maximum load in terms of kg and 70-kg passengers is: 

 
Max load 1080 kg 490 kg 590 kg

person590 kg 8 persons
70 kg

= − =
§ ·

= =¨ ¸
© ¹

 

ASSESS An elevator that accommodates 8 passengers, with a total mass of 590 kg sounds reasonable. Many 
passenger elevators, depending on their size, can accommodate up to about 2500 kg. 

 57. INTERPRET We're asked if the thrust from these planes' engines could overcome the weight of the planes. We 
assume the planes are pointed straight up and then calculate the net force. 
DEVELOP If the planes were trying to fly upwards (like rockets) their wings would not giving them any lift, so the 
net force would be: 

 net thrust gF F F ma= − =  

EVALUATE Starting with the F-16: 

 ( )( )3 2
net 132 kN 12 10 kg 9.8 m/s 14.4 kNF = − × =  

As this is positive, the F-16 can climb vertically at an acceleration of  

 2net
3

14.4 kN 1.2 m/s
12 10 kg

Fa
m

= = =
×

 

Now for the A-380: 

 ( )( )3 2
net 1.5 MN 560 10 kg 9.8 m/s 3.99 MNF = − × = −  

The negative sign here means that A-380 would fall if it didn't have the lift from its wings. 
ASSESS You might have guessed that a fighter can climb straight up, whereas a commercial jet liner cannot. 

 58. INTERPRET This problem involves using Hooke’s law to compute the total force exerted by two springs (of 
spring constants k1 and k2) that are connected side-by-side or end-to-end.  
DEVELOP For two springs connected side-by-side (in “parallel”), Tot 1 2F F F= +  and 1 2x x x= =  where FTot and x 
are the (magnitude of the) force and the stretch of the spring combination, and subscripts 1 and 2 refer to the 
individual springs. When the springs are connected end-to-end (in “series”), the tension is the same in both springs, so 

Tot 1 2F F F= =  (true for “massless” springs), whereas the total stretch of the two springs is the sum of the stretch of 
each individual spring; 1 2.x x x= +  
EVALUATE (a) For the “parallel” combination, Hooke’s law gives 1 1 1F k x=  and 2 2 2F k x= . Therefore, the total 
force is ( )Tot 1 1 2 2 1 2F k x k x k k x= + = + . 
(b) For the “series” combination, Hooke’s law gives  

1 2 1 2
1 2 Tot Tot

1 2 1 2 1 2

1 2
Tot

1 2

1 1F F k kx x x F F
k k k k k k

k kF x
k k

§ · § ·+= + = + = + =¨ ¸ ¨ ¸
© ¹ © ¹

§ ·
= ¨ ¸+© ¹

 

ASSESS For a system with many springs, we may define an effective spring constant as eff Totk F x= . In the 
parallel case, we have 1 2pk k k= + , whereas in the series case, ( )1 2 1 2sk k k k k= + . Common experience tells us 
that the parallel combination is stiffer than the series combination, and thus requires a greater amount of force to 
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( )

net

0

below

F ma
T w

L yT w M m g Mg mg
L

=
− =

−§ ·= = + = + ¨ ¸
© ¹

 

ASSESS To check our answer, we consider some limiting cases. If M = 0 and y = 0, then the tension should be just 
the weight of the rope. Inserting these values into the equation above gives  

P
1

0 L yT Mg mg mg
L

=
= −§ ·= + =¨ ¸

© ¹


����

 

as expected. If the rope is massless, then T = Mg, which is also what we expect. Finally, if y = L, then T = Mg, 
which is also what we expect. 

 67. INTERPRET We're asked to calculate the amount of jerk on an amusement ride, where jerk is the rate of change in acceleration. 
DEVELOP The word "rate" implies per time. The jerk is the time derivative of the acceleration. We're given an 
equation for the force, so the acceleration is just this divided by the mass, M, of the car and passengers.  
EVALUATE The acceleration on the amusement ride is 

 0 sinF Fa t
M M

ω= =  

The jerk is the time derivative of this: 

 0 cosda F t
dt M

ω ω=  

The maximum value of the cosine is 1, so the maximum jerk is equal to 0 /F Mω . 
ASSESS If the maximum jerk is too high, some of the passengers may suffer a whiplash. 

 68. INTERPRET You're asked to analyze data from an accelerometer in your laptop.    
DEVELOP The two forces acting on the laptop are gravity (downwards) and the normal force (upwards) from your 
lap. The apparent weight is just this normal force, which from Newton's 2nd law is equal to: ( )n m g a= + , 
assuming the positive direction is upwards.  
EVALUATE The first sign of turbulence is at interval B. The apparent weight is greater than the true weight, so the 
acceleration is in the upward (positive) direction.  
The answer is (a). 
ASSESS If the plane suddenly goes upwards, everyone on the plane would feel glued to their seats. You and your 
laptop will feel increases in your apparent weights. 

 69. INTERPRET You're asked to analyze data from an accelerometer in your laptop.    
DEVELOP The vertical acceleration is registered in how much the apparent weight diverges from the true weight.  
EVALUATE The apparent weight differs the most from the true weight during interval B. 
The answer is (a). 
ASSESS The change in the weigh during interval D appears to be about half that during interval B.  

 70. INTERPRET You're asked to analyze data from an accelerometer in your laptop.    
DEVELOP The apparent weight during interval C is just the true weight.   
EVALUATE If n mg= , then the vertical acceleration must be zero, or to say it another way, the plane must be 
moving with constant vertical velocity. 
The answer is (d). 
ASSESS We might be tempted to think the plane has no vertical velocity (at rest with respect to level ground), but 
the plane can have zero vertical acceleration while still rising or falling steadily. 
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 USING NEWTON’S LAWS 

EXERCISES 

Section 5.1 Using Newton’s Second Law 

 12. INTERPRET� This problem involves applying Newton’s second law in a two-dimensional situation. The object of 
interest is the 1.5-kg mass, and we are asked to find the second of two forces acting on the mass that would give it 
the given acceleration.  
DEVELOP� Draw a free-body diagram of the situation (see figure below). Include the acceleration of the mass, and 
write the acceleration in component form. Now apply Newton’s second law (for constant mass) in vector form to 
find the second force. 

a

F 1 = (6N)î

u
r

r

î

ĵ

 
EVALUATE The acceleration in component form is ( ) ( )ˆ ˆcos sina a i a jθ θ= +G

, with a = 7.3 m/s2 and θ = 30°. 
Thus, Newton’s law gives 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

net

2 1

2
2

ˆ ˆcos sin

ˆ ˆ ˆ ˆ ˆ1.5 kg 7.3 m/s cos 30 sin 30 6.8 N 2.7 N 5.5 N

F ma

F F ma i j

F i j i i j

θ θ
=

ª º+ = +¬ ¼
ª º= + − = +¬ ¼

D D

G G
G G

G
 

ASSESS� This force has magnitude ( ) ( )2 2
2 2.68 N 5.48 N 6.1 NF = + =  and points in the direction 

( )atan 5.48 N 2.68 N 64θ = = D  counterclockwise from the î  direction. 

 13. INTERPRET This problem requires an application on Newton’s second law in two dimensions. Two forces are 
exerted on the object of interest (i.e., the 3.1-kg mass) and produce an acceleration. With the mass of the object and 
one force given, we are asked to find the other force.  
DEVELOP� Newton’s second law for this mass says net 1 2F F F ma= + =

G G G G
, where we assume no other significant 

forces are acting. Thus, the second force is given by 2 1F ma F= −
G GG

. 
EVALUATE Inserting the expressions given in the problem statement for 1F

G
 and aG , we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
2 1

ˆ ˆ ˆ ˆ ˆ ˆ3.1 kg 0.91 m/s 0.27 m/s 1.2 N 2.5 N 4.0 N 1.7 NF ma F i j i j i jª º ª º= − = − − − − = +¬ ¼¬ ¼
G GG

 

ASSESS This force has magnitude ( ) ( )2 2
2 4.02 N 1.66 N 4.3 NF = + =  and points in the direction 

( )atan 1.66 N 4.02 N 22θ = = D  counterclockwise from the x axis. 

 14. INTERPRET In this problem, we are asked to find the tilt angle of an air table such that the acceleration of an 
object sliding on the surface of the table is the same as the gravitational acceleration near the surface of the Moon.  
DEVELOP� Example 5.1 shows that the acceleration down an incline is ( )sina g θ= . By setting the acceleration 
equal to the acceleration due to gravity on the surface of the Moon (a = gM = 1.6 m/s2), we can solve for the tilt 
angle θ. 
 
 
 

5 



5-2 Chapter 5 

 
© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may 

be reproduced, in any form or by any means, without permission in writing from the publisher. 

EVALUATE The angle of tilt should be 
2

2

1.6 m/s
asin asin 9.4

9.8 m/s
a
g

θ § ·§ ·= = = °¨ ¸ ¨ ¸© ¹ © ¹
 

above the horizontal. 
ASSESS Notice that the tilt angle does not depend on the mass of the object. 

 15. INTERPRET This problem involves Newton’s second law applied to a two-dimensional situation to find the 
acceleration of the skier, then kinematics to find the time it takes him to reach the bottom of the slope.  
DEVELOP Draw a free-body diagram of the situation (see figure below) and apply Newton’s second law to find 
the acceleration. The angle is θ = 24° and weight of the skier is w = mg. Given the acceleration (which is constant), 
we can use Equation 2.10, 2

0 0 2x x v t at= + + , with x – x0 = 1.3 km = 1300 m, to find how long it takes him to 
reach the bottom.  

u

r

mg sin(u)î

−mg cos(u)ĵ

r r

n = nĵ

w = mg  
EVALUATE Applying Newton’s second law to the skier gives two equations (one for the x direction and one for 
the y direction): 

( ) ( ) ( )
( )

net

cos 0ˆ ˆ ˆsin cos
sin

F ma

n mg
nj mg i j ma

g a
θ

θ θ
θ

=
­ − =°ª º+ − = � ®¬ ¼ =°̄

G G

G  

Solving the second scalar equation for acceleration, we find ( ) ( )2 29.8 m/s sin 24 3.986 m/sa = =D , and inserting 
this result into Equation 2.10 gives 

P

( ) ( )

0
2

0 0

0
2

2

2 2 1300 m
26 s

3.986 m/s

x x v t at

x x
t

a

=

= + +

−
= ± = =

 

where we have chosen the positive square root and we have used v0 = 0 because the skier starts at rest. 
ASSESS If the slope becomes vertical, 90θ → D  and a = g, which is what we expect because the skier would be 
free-falling. 

 16. INTERPRET In this problem, the physical quantity of interest is the tension force in the cable. To compute the 
tension, we apply Newton’s second law to the car + cable system. 
DEVELOP� Make a diagram of the situation showing the car and tow rope, and label the tension, acceleration, and 
angle (see figure below). Write the tension in component form: ( ) ( )ˆ ˆcos sinT T i T jθ θ= +

G
, where î  is in the 

direction of the truck’s acceleration. From this, we see that the net horizontal force acting on the car is ( )sinT θ . 
By Newton’s second law, the net horizontal force must be equal to the horizontal acceleration times the mass of the 
car. If the cable does not stretch, we know the acceleration of the car must be the same as that of the tow truck, 
which allows us to solve Newton’s second law for the tension T. 

25° 
a

T

Negligible  

Note: Problem 17 is done incorrectly.  The sec on part of the problem should use cosine, rather than sine.  
Full credit for attempting.
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EVALUATE Applying Newton’s second law to the motion in the horizontal direction, we obtain cosT maθ =  or  

( )
( ) ( )

( )
21400 kg 0.57 m/s

880 N
cos cos 25
maT

θ
= = =

°
 

ASSESS This force is oriented at 25° above horizontal. In component form, the tension is 

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ880 N cos 25 sin 25 800 N 370 NT i j i jª º= + = +¬ ¼
D D

G
. To see that our expression for T makes sense, 

let’s consider the limiting case where the cable is completely horizontal with 0.θ = The tension in this case would 
simply be ,T ma= which is the force required to accelerate the car.  

 17. INTERPRET This is a static problem in which we are looking for the force exerted on the tendon by the two 
muscles. 
DEVELOP� In this case, there are two forces pulling on the tendon as shown below in the figure: 

25°
25°

F1
r

F2
r

 
We are told that the horizontal pulls are opposite each other (meaning that the two forces are in the x-y plane), and 
we assume that the net horizontal force is zero: o o

1 2sin 25 sin 25 0F F− = , in which case 1 2 .F F=  The net 
vertical force pulls up on the tendon with a force equivalent to ten times the gymnast’s weight:  

 o o
1 2sin 25 sin 25 10F F mg+ =  

EVALUATE Solving for the force in each muscle gives  

 ( ) ( )2

1 2 o

10 55 kg 9.8 m/s
6.4 kN

2sin 25
F F= = =  

ASSESS The Achilles tendon is the thickest and strongest tendon in the body. In simply walking, it has to 
withstand strains of as much as 4 times the body weight. 

Section 5.2 Multiple Objects 

 18. INTERPRET This problem is similar to Example 5.4. We assume that your baby sister and the turkey are tied 
together through the tablecloth, so their accelerations should be equal. 
DEVELOP� As the baby sister is pulling with all her weight, we’ll assume that her feet are off the ground and that 
she is hanging from the tablecloth. In which case, the relevant forces acting on her are the tension (upwards) from 
the tablecloth and her own weight (downwards), which result in a downward acceleration: 

 ( )sis sis sis sis sis      yT w m a T m g a− = → = −
G G G  

We’ll assume the tablecloth is massless, so it applies the same tension to the turkey (albeit in a different direction). 
Although the turkey experiences vertical forces (its weight and normal force), the only relevant force in this case is 
the tension from the tablecloth in the horizontal direction (we assume the table is frictionless):  

 tky tky tky tky      xT m a T m a= → =
G G  

As we mentioned above, the horizontal acceleration of the turkey is equal to the vertical acceleration of the sister: 

x ya a a= = .  
EVALUATE (a) Equating the tension on the two objects, we can solve for the acceleration:  
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( ) ( ) ( )
( )
( )

R R L L L R

L
R L

R

sin sin

sin

sin

m g m g m m a

g a
m m

g a

θ θ
θ
θ

− = +

+
=

−
 

For the coordinate system we are using, a downward acceleration of the right-hand mass is positive, so a = 0.64 
m/s2, which gives 

( ) ( ) ( )
( ) ( )

2 2

R 2 2

9.8 m/s sin 60 0.64 m/s
2.1 kg 7.1 kg

9.8 m/s sin 20 0.64 m/s
m

+
= =

−

D

D
 

(b) If the right-hand mass accelerates up the slope, a = í0.76 m/s2. This gives 

( ) ( ) ( )
( ) ( )

2 2

R 2 2

9.8 m/s sin 60 0.76 m/s
2.1 kg 3.9 kg

9.8 m/s sin 20 0.76 m/s
m

−
= =

+

D

D
 

ASSESS� When the right-hand mass is smaller, the masses accelerate toward the left (and vice versa), which is 
what we would expect. 

 21. INTERPRET This is a two-dimensional problem that involves applying Newton’s second law to two climbers, tied 
together by a rope and sliding down an icy mountainside. The physical quantities of interest are their acceleration 
and the force required to bring them to a complete stop. 
DEVELOP� We choose two coordinate systems where the x axes are parallel to the slopes and y axes are 
perpendicular to the slopes (see figure below). Assume that the icy surface is frictionless and that the climbers 
move together as a unit with the same magnitude of down-slope acceleration a. If the rope is not stretching, the 
tension forces are equal in magnitude, so 1 2T T T= ≡ . To find the acceleration of the climbers, apply Newton’s 
second law in the direction of the slope. To find the force Fax exerted by the ax, again apply Newton’s second law, 
but this time include Fax and set the acceleration to zero; a = 0.  

ŷ1

x̂1

ŷ2

x̂2

T 2

Fax T 1

n 2

n 1

w 2

w 1

u2

u1

r

r

r

r

r

r

r

 
EVALUATE (b) For this part, we neglect the force due to the ax. Because we are now working in one-dimension 
(the x dimension), we forego vector notation, and insert the sign (±) according to the direction of the force. Of 
course, at the end we must interpret the sign of the resulting force as indicating its direction (positive or negative x 
direction). The magnitude of the net force in the 1̂x  and 2x̂ directions (downward positive) is thus 

( )
P

( )
( ) ( ) ( ) ( ) ( ) ( )

0

net 1 1 1 2 22

2 2

sin sin

75 kg 9.8 m/s sin 12 63 kg 9.8 m/s sin 38 533 N

F m g T T m gθ θ
=

= + − +

= ° + ° =
  

Thus, the magnitude of the acceleration of the pair is  

2net

1 2

533 N
3.9 m/s

75 kg 63 kg
F

a
m m

= = =
+ +

 

so the pair accelerate down the slope at 3.9 m/s2.  
(b) After they have stopped, we include the force of the ax. Thus, the magnitude of the force due to the ax is 

( )
P

( )
P

( ) ( )

0 0

net ax 1 1 1 2 22

ax 1 1 2 2

sin sin 0

sin sin 530 N

F F m g T T m g m a

F m g m g

θ θ
θ θ

= =

= − + + − + = =
= + =

 

so two significant figures. That is, the force exerted by the ax must be 530 N up the slope.  
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( ) ( ) ( )
( )
( )

R R L L L R

L
R L

R

sin sin

sin

sin

m g m g m m a

g a
m m

g a

θ θ
θ
θ

− = +

+
=

−
 

For the coordinate system we are using, a downward acceleration of the right-hand mass is positive, so a = 0.64 
m/s2, which gives 

( ) ( ) ( )
( ) ( )

2 2

R 2 2

9.8 m/s sin 60 0.64 m/s
2.1 kg 7.1 kg

9.8 m/s sin 20 0.64 m/s
m

+
= =

−

D

D
 

(b) If the right-hand mass accelerates up the slope, a = í0.76 m/s2. This gives 

( ) ( ) ( )
( ) ( )

2 2

R 2 2

9.8 m/s sin 60 0.76 m/s
2.1 kg 3.9 kg

9.8 m/s sin 20 0.76 m/s
m

−
= =

+

D

D
 

ASSESS� When the right-hand mass is smaller, the masses accelerate toward the left (and vice versa), which is 
what we would expect. 

 21. INTERPRET This is a two-dimensional problem that involves applying Newton’s second law to two climbers, tied 
together by a rope and sliding down an icy mountainside. The physical quantities of interest are their acceleration 
and the force required to bring them to a complete stop. 
DEVELOP� We choose two coordinate systems where the x axes are parallel to the slopes and y axes are 
perpendicular to the slopes (see figure below). Assume that the icy surface is frictionless and that the climbers 
move together as a unit with the same magnitude of down-slope acceleration a. If the rope is not stretching, the 
tension forces are equal in magnitude, so 1 2T T T= ≡ . To find the acceleration of the climbers, apply Newton’s 
second law in the direction of the slope. To find the force Fax exerted by the ax, again apply Newton’s second law, 
but this time include Fax and set the acceleration to zero; a = 0.  

ŷ1

x̂1

ŷ2

x̂2

T 2

Fax T 1

n 2

n 1

w 2

w 1

u2

u1

r

r

r

r

r

r

r

 
EVALUATE (b) For this part, we neglect the force due to the ax. Because we are now working in one-dimension 
(the x dimension), we forego vector notation, and insert the sign (±) according to the direction of the force. Of 
course, at the end we must interpret the sign of the resulting force as indicating its direction (positive or negative x 
direction). The magnitude of the net force in the 1̂x  and 2x̂ directions (downward positive) is thus 

( )
P

( )
( ) ( ) ( ) ( ) ( ) ( )

0

net 1 1 1 2 22

2 2

sin sin

75 kg 9.8 m/s sin 12 63 kg 9.8 m/s sin 38 533 N

F m g T T m gθ θ
=

= + − +

= ° + ° =
  

Thus, the magnitude of the acceleration of the pair is  

2net

1 2

533 N
3.9 m/s

75 kg 63 kg
F

a
m m

= = =
+ +

 

so the pair accelerate down the slope at 3.9 m/s2.  
(b) After they have stopped, we include the force of the ax. Thus, the magnitude of the force due to the ax is 

( )
P

( )
P

( ) ( )

0 0

net ax 1 1 1 2 22

ax 1 1 2 2

sin sin 0

sin sin 530 N

F F m g T T m g m a

F m g m g

θ θ
θ θ

= =

= − + + − + = =
= + =

 

so two significant figures. That is, the force exerted by the ax must be 530 N up the slope.  5-6 Chapter 5 
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ASSESS If the two climbers were not roped together, then their acceleration would have been  

( ) ( ) ( )

( ) ( ) ( )

2 21
1 1

1

2 22
2 2

2

sin 9.8 m/s sin 12 2.04 m/s

sin 9.8 m/s sin 38 6.03 m/s

F
a g

m
F

a g
m

θ

θ

= = = ° =

= = = ° =
 

The acceleration of the pair is the mass-weighted average of the individual accelerations: 

( ) ( ) ( ) ( )1 1 2 2net 1 2
1 2

1 2 1 2 1 2 1 2

21 2
1 2

1 2 1 2

sin sin
sin sin

3.9 m/s

m g m gF m m
a g g

m m m m m m m m

m m
a a

m m m m

θ θ
θ θ

+ § · § ·
= = = +¨ ¸ ¨ ¸+ + + +© ¹ © ¹

§ · § ·
= + =¨ ¸ ¨ ¸+ +© ¹ © ¹

 

Section 5.3 Circular Motion 

 22. INTERPRET� This problem involves circular motion and the force required to centripetally accelerate the Moon 
towards the Earth.  
DEVELOP� We can calculate the force required to centripetally acceleration of the Moon from the data in 
Appendix E and Equation 5.1.  
EVALUATE From Equation 5.1 the force required is 2

c cF ma mv r= = . The orbital speed of the Moon is given 
in Appendix E as v = 1.0 km/s = 1000 m/s, its orbital radius is r = 0.385 × 106 km = 3.85 × 108 m, and its mass is m 
= 7.35 × 1022 kg. Thus the cable tension required is  

( ) ( )2222
20

8

7.35 10 kg 1000 m/s
1.91 10 N

3.85 10 m
mvT
r

×
= = = ×

×
 

ASSESS� We could also calculate the velocity by dividing the circumference of the Moon’s orbit by its period. 
This gives ( ) ( )82 2 3.85 10 m 27.3 d 1.03 m/sv r Tπ π= = × =  Inserting this speed into Equation 5.1 gives a 
tension of 2.01 × 1020 N. Which answer (2.01 or 1.91 × 1020 N) is likely to more accurate (i.e., closer to the real 
answer)? For the latter calculation, we made the assumption that the Moon’s orbit is circular in calculating its 
orbital speed, which is an approximation. In reality the orbit is slightly elliptical. The average speed reported in 
Appendix E is therefore a more reliable datum, so that the calculation using the value v = 1000 m/s is probably 
more accurate. 

 23. INTERPRET In this problem we are asked to show that the force required to keep a mass m in a circular path of 
radius r with period T is 2 24 / .mr Tπ  
DEVELOP� To derive the formula, we first note that for an object of mass m in uniform circular motion, the 
magnitude of the net force is given by Equation 5.1: 2/F ma mv r= = . Next, we make use of the fact that the 
period of the motion (i.e., time for one revolution) is the circumference C = 2πr divided by the speed v. Thus, 

2 /T r vπ= . 
EVALUATE Combining the two expressions, the force can be rewritten as 

22 2

2

2 4mv m r mrF
r r T T

π π§ ·= = =¨ ¸© ¹
 

ASSESS Our result indicates that for a fixed radius r, the centripetal force is inversely proportional to T2. For 
example, if T is very large (i.e., it takes a very long time for the mass to complete one revolution), then the speed v 
is very small and the centripetal force F is also very small.  

 24. INTERPRET For the rock to whirl around in a circle, the string has to supply the centripetal force through its 
tension. To keep this tension below the limit, the string makes an angle with the horizontal, as shown in Figure 
5.11 in the text.  
DEVELOP� The situation is the same as described in Example 5.5. The net vertical force is zero, so the weight is 
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ASSESS If the two climbers were not roped together, then their acceleration would have been  

( ) ( ) ( )

( ) ( ) ( )

2 21
1 1

1

2 22
2 2

2

sin 9.8 m/s sin 12 2.04 m/s

sin 9.8 m/s sin 38 6.03 m/s

F
a g

m
F

a g
m

θ

θ

= = = ° =

= = = ° =
 

The acceleration of the pair is the mass-weighted average of the individual accelerations: 

( ) ( ) ( ) ( )1 1 2 2net 1 2
1 2

1 2 1 2 1 2 1 2

21 2
1 2

1 2 1 2

sin sin
sin sin

3.9 m/s

m g m gF m m
a g g

m m m m m m m m

m m
a a

m m m m

θ θ
θ θ

+ § · § ·
= = = +¨ ¸ ¨ ¸+ + + +© ¹ © ¹

§ · § ·
= + =¨ ¸ ¨ ¸+ +© ¹ © ¹

 

Section 5.3 Circular Motion 

 22. INTERPRET� This problem involves circular motion and the force required to centripetally accelerate the Moon 
towards the Earth.  
DEVELOP� We can calculate the force required to centripetally acceleration of the Moon from the data in 
Appendix E and Equation 5.1.  
EVALUATE From Equation 5.1 the force required is 2

c cF ma mv r= = . The orbital speed of the Moon is given 
in Appendix E as v = 1.0 km/s = 1000 m/s, its orbital radius is r = 0.385 × 106 km = 3.85 × 108 m, and its mass is m 
= 7.35 × 1022 kg. Thus the cable tension required is  

( ) ( )2222
20

8

7.35 10 kg 1000 m/s
1.91 10 N

3.85 10 m
mvT
r

×
= = = ×

×
 

ASSESS� We could also calculate the velocity by dividing the circumference of the Moon’s orbit by its period. 
This gives ( ) ( )82 2 3.85 10 m 27.3 d 1.03 m/sv r Tπ π= = × =  Inserting this speed into Equation 5.1 gives a 
tension of 2.01 × 1020 N. Which answer (2.01 or 1.91 × 1020 N) is likely to more accurate (i.e., closer to the real 
answer)? For the latter calculation, we made the assumption that the Moon’s orbit is circular in calculating its 
orbital speed, which is an approximation. In reality the orbit is slightly elliptical. The average speed reported in 
Appendix E is therefore a more reliable datum, so that the calculation using the value v = 1000 m/s is probably 
more accurate. 

 23. INTERPRET In this problem we are asked to show that the force required to keep a mass m in a circular path of 
radius r with period T is 2 24 / .mr Tπ  
DEVELOP� To derive the formula, we first note that for an object of mass m in uniform circular motion, the 
magnitude of the net force is given by Equation 5.1: 2/F ma mv r= = . Next, we make use of the fact that the 
period of the motion (i.e., time for one revolution) is the circumference C = 2πr divided by the speed v. Thus, 

2 /T r vπ= . 
EVALUATE Combining the two expressions, the force can be rewritten as 

22 2

2

2 4mv m r mrF
r r T T

π π§ ·= = =¨ ¸© ¹
 

ASSESS Our result indicates that for a fixed radius r, the centripetal force is inversely proportional to T2. For 
example, if T is very large (i.e., it takes a very long time for the mass to complete one revolution), then the speed v 
is very small and the centripetal force F is also very small.  

 24. INTERPRET For the rock to whirl around in a circle, the string has to supply the centripetal force through its 
tension. To keep this tension below the limit, the string makes an angle with the horizontal, as shown in Figure 
5.11 in the text.  
DEVELOP� The situation is the same as described in Example 5.5. The net vertical force is zero, so the weight is Using Newton’s Laws� 5-7 
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balanced by the vertical component of the tension sinT mgθ = . As for the horizontal component of the tension, it is 
providing the needed centripetal force, 2cos /T mv rθ = . The radius of the rock’s trajectory is cosr L θ= .  
EVALUATE (a) We are first asked to find the minimum angle that keeps the tension under the string’s breaking 
limit:  

 ( ) ( )
( )

2
1 1 o

min
max

0.940 kg 9.8 m/s
sin sin 4.40

120 N
mg
T

θ − −
§ ·§ ·

= = =¨ ¸¨ ¸© ¹ © ¹
 

(b) At this angle, the speed of the rock is 

 ( ) ( )
( )

omax
min

120 N 1.30 m
cos cos 4.40 12.8 m/s

0.940 kg
T L

v
m

θ= = =  

ASSESS The stronger the string is, the closer to the horizontal it can whirl the rock around (i.e. min 0θ →  as maxT  
increases). But to maintain such a trajectory, the velocity has to increase, so that the centripetal acceleration is 
sufficient.  

 25. INTERPRET You’re asked to find the velocity of the subway while rounding the curve. We’ll assume uniform 
circular motion, in which case all the objects in the subway are accelerating according to 2 /a v r= .  
DEVELOP� The only information you have is that a strap is dangled at 15° to the vertical during the turn. You can 
assume that the strap hung straight down before the turn and that its displacement was outward with respect to the 
center of the curve. We can think of the strap as a mass hanging from an attachment (perhaps a chain or belt) that 
provides a tension, as shown in the figure below.  

158

Towards the center
of the curve

ar

F g
r

T
r

 
As we said above, the strap and everything else in the subway experience an acceleration, which obeys Newton’s 2nd 
law: net gF F T ma+ =

G G G G= . We’ll choose our coordinate system such that the acceleration is in the +x-direction. 
Therefore, in component form, the second law is 

 
2

o

o

sin15

cos15 0

x

y g

mvT T ma
r

T F T mg

= = =

− = − =
 

We’ll evaluate these equations to find the velocity of the subway. 
EVALUATE We see from above that o/ cos15T mg= , so otan15a g=  and  

 ( ) ( ) ( )2 o9.8 m/s tan15 132 m 18.6 m/s 67.0 km/hv ar= = = =  

The train did exceed the 45 km/h speed limit on this curve by 22 km/h, thus provoking the derailment. 
ASSESS As part of the derivation, we found that the acceleration obeys: tana g θ= . Does that make sense? If the 
strap were hanging straight down 0θ = , the acceleration would be zero, as we would expect for a train that is 
moving straight at a constant speed.  

 26. INTERPRET� This problem involves circular motion and Newton’s second law. We are asked to find the speed at 
which a tetherball circles given the angle its cord makes with the horizontal.  
DEVELOP� Draw a free-body diagram of the ball (see figure below). Because the vertical component of the ball’s 
acceleration is zero, we know from Newton’s second law that the vertical component of the tension force pulling 
the ball up must cancel the gravitation force pulling the ball down, so w = Tsin(θ). Applying Newton’s second law 
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DEVELOP� Draw a free-body diagram of the situation (see figure below). We define the positive-x direction to be 

the direction of the puck’s initial velocity v0 = 14 m/s. Given that it travels a distance of x – x0 = 56 m, we can find 

the distance traveled by using the kinematic Equation 2.11, ( )2 2
0 02v v a x x= + − . The result is 

( )
2
0

02
v

a
x x

= −
−

 

where we have used the fact that the final velocity is v = 0. Notice that the acceleration is negative, meaning that 

the puck decelerates. By applying Newton’s second law in the vertical direction, we know that the normal force 

must have the same magnitude as the weight, because the puck does not accelerate vertically. Thus, n = w. The 

force of friction is the only horizontal force acting on the puck, so Newton’s second law and Equation 5.3 tell us 

that net k kF f mg maµ= − = − = , where we have inserted a minus sign because the friction force acts to oppose the 

motion, which we take to be in the positive-x direction.  

w

n

fk
î

r

r

r

 
EVALUATE Inserting the known quantities into the Newton’s second law gives 

( )
( )

( ) ( )
22

0
2

0

14 m/s
0.18

2 2 9.8 m/s 56 m

k

k

mg ma

va
g g x x

µ

µ

− =

−= − = − = =
−

 

ASSESS The result ka gµ= −  shows that increasing the coefficient of friction would result in a greater 
acceleration. This makes sense because friction is what causes the acceleration.  

 30. INTERPRET� This problem involves Newton’s second law, the force due to kinetic friction, and kinematics. The 
object of interest is the skier, and we are asked to find how much longer it would take him to descend a slope with 
a non-zero coefficient of kinetic friction as compared to if there were no friction.  
DEVELOP� Start with a free-body diagram, and choose a coordinate system in which the positive-x direction is 
down the slope (see figure below). The forces acting on the skier are the force of gravity, w = mg, the normal force 
n exerted by the slope, and the force fk due to kinetic friction. To find the skier’s acceleration, apply Newton’s 
second law in the î  direction This gives  

( )
net

sink

F ma
f w maθ

=
− + =

 

where w = mg and we have made fk < 0 because it always acts to oppose the motion, so in this case it acts in the 
negative-x direction. The force due to kinetic friction may be found from Equation 5.3, ( )cosk k kf n mgµ µ θ= = , 
where we have used Newton’s second law in the ĵ  direction in the final equality: 

( ) ( )net cos 0 cosF n mg ma n mgθ θ= − = = � =
 

We can now calculate the acceleration a, from which we can find the time to descend the slope using kinematic 
Equation 2.10 for constant acceleration, 2

0 0 2x x v t at= + + , with x í x0 = 100 m and v0 = 0 m/s. 
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u

î

fk
r

nr

wr  
EVALUATE If there is no kinetic friction (µk = 0 so fk = 0), then, from the first equation above, the acceleration is 

( )1 sina g θ= . From Equation 2.10, the time to descend the slope is  

P

( ) ( )
( )

( )
( ) ( )

0 2
1 1

0 0 1

0 0
1 2

1

2
2 2 2 100 m

6.59 s
sin 9.8 m/s sin 28

a t
x x v t

x x x x
t

a g θ

− = +

− −
= = = =

D

 

where we have taken the positive square root. If µk = 0.17, then the acceleration is ( ) ( )sin coska g gθ µ θ= − , so 
the time to descend the slope is 

( ) ( )
( ) ( )

( )
( ) ( ) ( )

0 0
2 2

2

2 2 2 100 m
7.99 s

sin cos 9.8 m/s sin 28 0.17cos 28k

x x x x
t

a g gθ µ θ
− −

= = = =
− ª º−¬ ¼

D D
 

The difference in the time to descend the slopes is t2 í t1 = 7.99 s – 6.59 s = 1.4 s. 
ASSESS� Notice that the units for the formulas giving the time are seconds. Considering that the fastest runners can 
cover 100 m in slightly less than 10 s, we see that our skier travels considerably faster than an extremely fast runner. 

 31. INTERPRET In this problem, the car is moving in uniform circular motion thanks to the friction provided by the 
road.  
DEVELOP� To maintain uniform circular motion through the unbanked turn, the car must be able to accelerate at 

2 /a v r= . This requires a force of friction: 2
s /f ma mv r= = , directed inward along the curve’s radius. As 

explained in Example 5.9, this friction is static because the car’s motion is perpendicular to this force. Using 
Equation 5.2: s sf nµ≤ , we will find the minimum value for the coefficient of friction. 
EVALUATE Because the curve is unbanked, the normal is just equal to the weight of the car (see Figure 5.24). 
Solving for the coefficient of friction 

 ( )
( ) ( )

2 22

s 2

90 km/h 1 m/s 0.53
3.6 km/h120 m 9.8 m/s

v
rg

µ § ·≥ = =¨ ¸© ¹
 

ASSESS This seems reasonable for the minimum friction coefficient. Rubber tires on a dry concrete road will 
typically have s 1µ ≈ , but notice that if the concrete is wet, the coefficient drops to about 0.4.  

PROBLEMS 

 32. INTERPRET We wish to find the acceleration of a skier on a frictionless slope, which we can do using Newton’s 
second law (for constant mass). This problem was done for us in Example 5.1, but this time we do it with a 
coordinate system that has horizontal and vertical axes. 
DEVELOP� Start with a free-body diagram, as shown in the figure below. To find the acceleration, apply Newton’s 
second law, which gives 

( ) ( )
net

ˆ ˆsin cos

F ma

ma n i n w jθ θ
=
= + ª − º¬ ¼

G G

G  
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We know that the skier does not accelerate in the direction of the normal force, so the forces in this direction must 
cancel. This gives ( )cosn w θ= , with w = mg. This allows us to find the acceleration and the normal force, which 
is the force the snow exerts on the skier. 

î

ĵ

u
nr

wr

 
EVALUATE (a) Inserting the expression for the normal force into Newton’s second law gives an acceleration of 

( ) ( ) ( )
( ) ( ) ( ) ( ){ } ( ) ( )

2

2 2 2 2

ˆ ˆsin cos cos

ˆ ˆ ˆ ˆ9.8 m/s sin 32 cos 32 cos 32 1 4.40 m/s 2.75 m/s

a g i g g j

i j i j

θ θ θª º= + −¬ ¼

ª º= + − = −¬ ¼
D D D

G

 

The magnitude of this acceleration is ( ) ( )2 22 2 24.40 m/s 2.75 m/s 5.2 m/sa = + =  and the direction is θ = 

atan(2.75/4.40) = í32°, which is the same result as found in Example 5.1. 
(b) The force exerted by the snow on the skier is 

( ) ( ) ( ) ( )2cos 65 kg 9.8 m/s cos 32 540 Nn mg θ= = =D  

ASSESS The answers we get are independent of the coordinate system used. However, choosing the best coordinate 
system can make the problem easier to understand and to solve. 

 33. INTERPRET This problem involves a block with an initial velocity sliding up a frictionless ramp. The quantity of 
interest is the distance it travels before coming to a complete stop. We will apply Newton’s second law and 
kinematics to solve this problem. 
DEVELOP� Draw a free-body diagram of the situation (see figure below). Applying Newton’s second law in the î  
direction gives íwsin(θ) = ma, or a = ígsin(θ). The stopping distance can be calculated by solving the kinematic 
Equation 2.11: 2 2

0 2 .v v a x= + ∆   

î

ĵ

u

wr

nr

 
EVALUATE Inserting the acceleration into Equation 2.11, the distance traveled by the block is 

( )
( ) ( )

( ) ( )
2 22 2 2 2

0 0
2

0 m/s 2.2 m/s
0.43 m

2 2 sin 2 9.8 m/s sin 35
v v v v

x
a g θ

−− −
∆ = = = =

ª− º − °¬ ¼
 

ASSESS The result shows that the distance traveled is inversely proportional to sin(θ). To see that this makes 
sense, consider the limit where 0θ → . This situation would correspond to a frictionless horizontal surface. In this 
case, we expect the block to travel indefinitely, in agreement with our expression for ∆x. 

 34. INTERPRET We are asked to find the sum of the forces provided by two motor proteins.  
DEVELOP� The net force on the spindle pole is net 1 2F F F+

G G G
= . We’re only asked to find the magnitude of this sum, 

so let’s choose a coordinate system that makes our life easy. If the +x axis splits the middle between the two forces, 
then 1 o o

2 65 32.5θ = ± = ±  and the y-components of the forces ( sinyF F θ= ) cancel each other out. Therefore, 
the net force points completely in the x-direction.  5-12 Chapter 5 
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EVALUATE The magnitude is just the sum of the x-components: 

 ( ) ( ) ( )o o
net 1 2 7.3 pN cos 32.5 cos 32.5 12 pNx xF F F ª º= + = + + − =¬ ¼  

ASSESS The answer is within the limits of what the sum could be. If the forces were aligned ( 0θ = ), then the net 
force would be 2 14.6 NF = . Whereas if the forces were completely opposite ( o180θ = ), then the net force 
would be zero. 

 35. INTERPRET� This problem involves Newton’s second law. We are asked to find the tension in a rope needed to 
support an object of a given mass.  
DEVELOP� Draw a diagram of the situation (see figure below). Apply Newton’s second law in the y direction and 
solve for the tension of the rope. Note that the tension of the rope is everywhere the same (for a massless rope), so 
T1 = T2 = T,  

8° 8° 
T2 T1

x

y

w

 
EVALUATE Applied in the y direction, Newton’s second law gives 

( ) ( )

( )
( ) ( )

( )

1 2

2

sin sin

15 kg 9.8 m/s
530 N

2sin 2sin 8

T T w

mgT

θ θ

θ

+ =

= = =
D

 

The monkey’s weight is w = mg = (15 kg)(9.8 m/s2) = 150 N (to two significant figures). This is over three times 
less than the tension force in the rope. 
ASSESS� Notice that the Tl � as θ l 0 because there is a vanishingly small component of the tension acting in 
the vertical direction. The majority of the tension simply serves to pull the two support points together. 

 36. INTERPRET� This problem is similar to Problem 35, except that the angles at each end of the rope are different. 
We will apply Newton’s second law to solve this problem. 
DEVELOP� Draw a free-body diagram for the pack (see below). The angles are θ1 = 28° and θ2 = 71°, and the 
weight of the pack is w = mg. Because the pack does not move, its acceleration in both the horizontal and vertical 
direction is zero. Thus, applying Newton’s second law in the vertical direction gives 

( ) ( )
net

2 2 1 1

0

sin sin 0

F ma
T T wθ θ

= =
+ − =

 

and in the horizontal direction it gives 

( ) ( )
net

2 2 1 1

0

cos cos 0

F ma
T Tθ θ

= =
− + =

 

Using these two equations, we can solve for T1 and T2. 
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EVALUATE The magnitude is just the sum of the x-components: 

 ( ) ( ) ( )o o
net 1 2 7.3 pN cos 32.5 cos 32.5 12 pNx xF F F ª º= + = + + − =¬ ¼  

ASSESS The answer is within the limits of what the sum could be. If the forces were aligned ( 0θ = ), then the net 
force would be 2 14.6 NF = . Whereas if the forces were completely opposite ( o180θ = ), then the net force 
would be zero. 

 35. INTERPRET� This problem involves Newton’s second law. We are asked to find the tension in a rope needed to 
support an object of a given mass.  
DEVELOP� Draw a diagram of the situation (see figure below). Apply Newton’s second law in the y direction and 
solve for the tension of the rope. Note that the tension of the rope is everywhere the same (for a massless rope), so 
T1 = T2 = T,  

8° 8° 
T2 T1

x

y

w

 
EVALUATE Applied in the y direction, Newton’s second law gives 

( ) ( )

( )
( ) ( )

( )

1 2

2

sin sin

15 kg 9.8 m/s
530 N

2sin 2sin 8

T T w

mgT

θ θ

θ

+ =

= = =
D

 

The monkey’s weight is w = mg = (15 kg)(9.8 m/s2) = 150 N (to two significant figures). This is over three times 
less than the tension force in the rope. 
ASSESS� Notice that the Tl � as θ l 0 because there is a vanishingly small component of the tension acting in 
the vertical direction. The majority of the tension simply serves to pull the two support points together. 

 36. INTERPRET� This problem is similar to Problem 35, except that the angles at each end of the rope are different. 
We will apply Newton’s second law to solve this problem. 
DEVELOP� Draw a free-body diagram for the pack (see below). The angles are θ1 = 28° and θ2 = 71°, and the 
weight of the pack is w = mg. Because the pack does not move, its acceleration in both the horizontal and vertical 
direction is zero. Thus, applying Newton’s second law in the vertical direction gives 

( ) ( )
net

2 2 1 1

0

sin sin 0

F ma
T T wθ θ

= =
+ − =

 

and in the horizontal direction it gives 

( ) ( )
net

2 2 1 1

0

cos cos 0

F ma
T Tθ θ

= =
− + =

 

Using these two equations, we can solve for T1 and T2. 
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T 1

u1
u2

wr

r
T 2
r

 
EVALUATE� Using the second equation above to express T2 in terms of T1 gives ( ) ( )1 2 2 1cos cosT T θ θ= , which 
when inserted in the first equation gives  

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

2 2 2 2 1

2

2
2 2 1

sin cos tan

26 kg 9.8 m/s
sin cos tan sin 71 cos 71 tan 28

230 N

T T mg

mgT

θ θ θ

θ θ θ

+ =

= =
+ +

=

D D D
 

Inserting this value into the expression for T1 gives 

( ) ( ) ( ) ( ) ( )1 2 2 1cos cos 228 N cos 71 cos 28 84 NT T θ θ= = =D D  

ASSESS� Notice that the tension in the rope on each side of the pack is unequal because the angle made by the 
rope is different. 

 37. INTERPRET The key concepts in this problem are circular motion and Newton’s second law. The object of 
interest is the mass m1 that travels in a circular path. By analyzing the force acting on m1 and m2, the tension in the 
string and the period of the circular motion of m1 can be determined. 
DEVELOP� Apply Newton’s second law to each mass (see Figure 5.31). Because the table is frictionless, the only 
force acting on m1 in the horizontal plane is the tension. Assuming the massless rope does not encounter any 
friction when it goes through the hole in the table, the tension T acting on each mass is of the same magnitude. By 
Newton’s second law, and because m2 does not accelerate, this tension must cancel the force due to gravity acting 
on m2. Thus, we have 

2 2
1 1

1 net 1 1

2 net 2 2 2 2

:

: 0

m v m v
m F T m a T

R R
m F T m g m a T m g

= = = � =

= − = = � =
 

EVALUATE (a) Newton’s second law applied to the stationary mass m2 yields T = m2g.  
(b) The tension in the string also provides the centripetal force for m1. Let 2 R vτ π=  be the period of the circular 
motion. The above equation for m1 then gives 

22 2
1 1 1

2

42m v m m RRT
R R

ππ
τ τ

§ ·= = =¨ ¸© ¹
 

But from (a), we also have T = m2g. By combining the two equations, we obtain  
2

1
22

1

2

4

2

m R
m g

m R
m g

π
τ

τ π

=

=
 

ASSESS From the expression for ,τ we can draw the following conclusions: (i) Because Rτ ∝ , the larger the 
radius; the longer the period. (ii) With the tension (or m2) kept fixed, increasing m1 also leads to a longer period. 
Note that the derivation above only applies for uniform circular motion. If m1 is pulled in toward the hole (i.e., R is 
reduced), then the motion is no longer circular (although the acceleration is still centripetal), and the formula a = 
v2/R does not apply. 

 38. INTERPRET We’re asked to calculate the horizontal traction force supplied by a mass and a set of 
massless/frictionless pulleys.  
DEVELOP� Because the pulleys are massless and frictionless, the tension T in the cord will be the same throughout 5-14 Chapter 5 
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the system. This tension has to support the mass from falling, so T mg= . The horizontal force on the leg is the 
sum from the cord above and below the pulley attached to the foot: 

 1 2cos cosyF T Tθ θ= +  

EVALUATE Using the values given, the traction force on the leg is: 

 ( ) ( ) ( )2 o o4.8 kg 9.8 m/s cos 70 cos 20 60 NyF = + =  

ASSESS This force is about 10% of the weight of a 60 kg person, so this seems reasonable for the amount of force 
needed to counter some of the forces exerted by muscles in the leg. 

 39. INTERPRET� This problem involves Newton’s second and third laws and uniform circular motion. The objects of 
interest are the roller-coaster seat, the seat belt, and the rider. We are asked to find the force exerted on a rider at 
the top of the turn by the roller-coaster seat and by the seatbelt, and to determine what would happen should the 
rider unbuckle his seatbelt.  
DEVELOP� The free-body diagram for the rider at the top of the track will be the same as for the roller coaster (see 
Figure. 5.16). The rider thus has two forces acting on him, the normal force due to the seat and the force due to 
gravity, both of which are pushing him down. By Newton’s second law, the sum of these forces must be 
proportional to the acceleration. Expressed mathematically, we have 

2

net
mvF n mg ma
R

= + = =  

where m = 60 kg, v = 9.7 m/s, and R = 6.3 m. Solve this equation for n, which is the force exerted by the roller-
coaster seat on the rider. To find the force exerted by the seatbelt on the rider, make a free-body diagram of the 
seatbelt to find the force exerted by the rider on the seatbelt, then use Newton’s third law to find the force exerted 
by the seatbelt on the rider.  
EVALUATE (a) From Newton’s second law, the seat exerts a force 

( ) ( ) ( )
22

29.7 m/s
60 kg 9.8 m/s 310 N

6.3 m
mvn mg
R

ª º
= − = − =« »

« »¬ ¼
 

on the rider. As indicated in Figure 5.16, the normal force is oriented downward, accelerating the rider toward the 
Earth. 
(b) A free-body diagram of the seatbelt is exactly like that for the rider (see Figure 5.16), but the mass of the 
seatbelt is different. Therefore, Newton’s second law applied to the seatbelt gives 

2
SB

net R-SB SB SB
m v

F n m g m a
R

= + = =  

where nR-SB is now the force exerted by the rider on the seatbelt and mSB is the (unknown) mass of the seatbelt. 
From Newton’s third law, we know that the force exerted by the seatbelt on the rider has the same magnitude as nR-

SB, but is oriented in the opposite direction. Therefore,  
2

SB
SB-R

m v
n

R
= −  

The negative sign means that this force is oriented upward, as expected. Without knowledge of the mass of the 
seatbelt, we cannot find the force nSB-R, but we can see that this force is simply the force needed to give the seatbelt 
the same centripetal acceleration a = v2/R as the rider. 
(c) If the rider unbuckles at this point, nothing would happen because the seatbelt does not enter into Newton’s 
second law in part (a). Thus, the rider would remain in his seat. 
ASSESS� Because the seat pushes down on the rider with the normal force, the ride’s centripetal acceleration a 
toward the Earth is greater than that due to gravity; a > g. This can be verified by calculating the centripetal 
acceleration, which gives a = v2/R = (9.7 m/s)2/(6.3 m) = 15 m/s2 > g. If the normal force were to go to zero, the 
rider’s acceleration due to gravity g would be greater than the centripetal acceleration of the roller coaster, and the 
rider would fall out of his seat (unless the seat belt were there to restrain him). 
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where we have inserted a negative sign for the friction force and have used the fact that the rock does not 
accelerate in the y direction, and that the force due to gravity on the rock is Fgr = mrg. Applying Newton’s law to 
the climber gives the same result as in Example 5.4: 

cT m g ma− = −  

Note that the acceleration of the climber and the rock has the same magnitude, although they act in different 
directions. This is so because the rope is considered to not stretch, so both objects must move at the same rate. 
EVALUATE� Solve the 3 equations above for the acceleration, which gives 

( ) ( ) ( )2 270 kg 0.057 940 kg
9.8 m/s 0.16 m/s

70 kg 940 kg

k r r c c

c k r

c r

m g m a m g m a

m m
a g

m m

µ
µ

− − =
ª − º§ ·−

= = =« »¨ ¸+ +© ¹ ¬ ¼

 

Inserting this result into the kinematic Equation 2.10 gives ( ) ( )22 51 m 0.159 m/s 25 s.t = =  
ASSESS Notice that our expression for the acceleration reverts to that found in Example 5.4 if we let mk l 0. 

 46. INTERPRET� This problem involves Newton’s second law. The object of interest is the bat, and the forces 
involved are gravity gF

G
, the normal force nG , and the force due to static friction sf

G
. We are asked to find the 

minimum acceleration of the train that prevents the bat from sliding down the window. 
DEVELOP� Draw a free-body diagram for the situation (see figure below). Using Newton’s second law, the force 
equation for the bat is net sgF F n f ma= + + =

GG G G G
. This can be decomposed into two equations, one for the y 

direction and one for the x direction: 

s

:
: 0
x n ma
y f mg

=
− =  

The force due to static friction is s sf nµ≤ , which we can use in the equations above to find the minimum 
accelration. 

 
EVALUATE� Inserting the inequality for static friction into Newton’s second law gives 

s s

s
2

s

9.8 m/s 11 m/s
0.86

mg f n
mg ma

ga

µ
µ

µ

= ≤
≤

≥ = =

 

ASSESS The minimum acceleration is inversely proportional to sµ ,which is the coefficient of static friction 
between the bat and the train. The smaller the value of sµ  the greater the acceleration is needed to keep the bat in 
place. In the limit s 0µ →  (frictionless surface), the acceleration would have to be infinitely large. However, for 

sµ → ∞  (infinitely sticky surface), we get 0.a→  

 47. INTERPRET� This problem involves Newton’s second law and kinematics. The object of interest is the train, and 
we are asked to find if the train can stop within 150 m if the wheels maintain static contact with the rails (i.e., the 
wheels do not skid on the rails).  
DEVELOP� Considering all the wheels as one point of contact, make a free-body diagram for the train (see figure 
below). Applying Newton’s law to the train wheels gives net s gF f n F ma= + + =

GG GG G
, and writing this in component 

form gives  

: 0

:
g

s

x F n
y f ma

+ =
− = −

  

where we have used the fact that there is zero acceleration in the x direction and we have explicitly noted the sign 
of the friction force and the acceleration to emphasize that they are in the same direction (negative-x direction). Using Newton’s Laws� 5-19 
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The force due to static friction is s sf nµ≤  and the force due to gravity is Fg = ímg (because gravity acts in the 
downward direction). Insert these values into the above equations to find the maximum acceleration possible 
without having the wheels slip on the rails, then use the kinematic Equation 2.11 ( )2 2

0 02v v a x x= + −  to find the 
stopping distance. 

fs
r

F g
r

nr

ar
î

ĵ

 
EVALUATE Newton’s second law thus gives 

s s s

s

ma f n mg
a g

µ µ
µ
= ≤ =

≤
 

so the maximum acceleration possible is sgµ . Inserting this result for the acceleration into Equation 2.11 gives a 
stopping distance of  

P
( )

( )
( ) ( )

0
2 2

0 0

2 222 2 3
0 0

0 2
s

2

140 km/h 10 m h 130 m
2 2 km 3600 s2 0.58 9.8 m/s

v v a x x

v v
x x

a gµ

=

= + −

§ · § ·
− = = = =¨ ¸¨ ¸ © ¹© ¹

 

so the train will stop before hitting the car. 
ASSESS The stopping time for the train is  

( )
( ) ( )
0 0

0

0

2

2 2 133 m
6.8 s

38.9 m/s

x x v v t

x x
t

v

− = +

−
= = =

 

which should be just enough time for the passengers to get out of the car. 

 48. INTERPRET� This problem involves uniform circular motion (assuming the bug walks at a speed that is much, 
much less then the tangential speed of the CD at the bug’s position). and Newton’s second law. The object of 
interest is the bug, and the forces acting on it are gravity gF

G
 normal force nG  and static friction sf

G
. We want to 

find out how far the bug gets from the center before it begins to slip. 
DEVELOP� Draw a free-body diagram of the bug as seen from the side (see figure below). We have chosen the x 
direction to be away from the center of the CD, so the centripetal acceleration a is oriented in the negative-x 
direction. Using Newton’s second law, the force equation for the bug is net s .gF F n f ma= + + =

GG G G G
 Assume that the 

disc is level. Assuming uniform circular motion (see comment in Interpret), we can use Equation 5.1 a = v2/r. 
Writing Newton’s second law in component form thus gives : 

( )2

s:

:

mv r
x f

r
y n mg

− = −

=
 

The force due to static friction is s sf nµ≤ , and the speed of the disc as a function of the bug’s radial position and 

the frequency of revolution (φ = 200 sí1) is ( ) 2v r rπ φ= , so we can find the distance r at which static friction can 

no longer supply the necessary acceleration (i.e., the bug starts to slip). 
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 62. INTERPRET In this problem we would like to find out the difference in a person’s weights measured at the north 
pole and at the equator. 
DEVELOP� When standing on the Earth’s surface, you are rotating with the Earth about its axis through the poles, 
with a period of 1 dT = . The radius of your circle of rotation (your perpendicular distance to the axis) is 

E cosr R θ= , where ER  is the radius of the Earth (constant if geographical variations are neglected) and θ  is 
your latitude. 
Your rotational speed depends on your latitude: 2 /v r Tπ= . Consequently, your centripetal acceleration has 
magnitude of 

22
E

c 2

4 cosRva
r T

π θ= =  

and is directed toward the axis of rotation. We assume there are only two forces acting on you, gravity, gF
G

 (with 
magnitude mg approximately constant, directed towards the center of the Earth), and the force exerted by the scale, 

sF
G

. Regard the figure below:  
Fs

Fs

Fs

Fg

RE

Fg

Fg

At pole

At equator

r

u

 
From Newton’s 2nd law, g s cF F ma+ =

G G G
. 

EVALUATE At the north pole, o90θ =  and there’s no centripetal acceleration, c 0a = . The scale and gravity 
forces are balanced, so the scale reads your actual weight: s,pF mg= . On the other hand, at the equator the 
centripetal acceleration has a maximum magnitude and points directly opposite to gravity. So the scale reads  

2
E

s,e c 2

4
1

R
F mg ma mg

gT
π§ ·

= − = −¨ ¸© ¹
 

Therefore, the equator reading will be less than the north pole reading by a percentage of 

 ( )
( ) ( )

2 62
s,p s,e E

2 22
s,p

4 6.37 10 m4
0.343%

9.81 m/s 86,400 s

F F R
F gT

ππ ×−
= = =  

ASSESS Our result shows that you weigh more at the north pole because the centripetal acceleration is zero there. 
But the difference is hardly noticeable.  

 63. INTERPRET� This problem involves Newton’s second law, uniform circular motion, and frictional forces. The 
object of interest is the car, and we are to find whether braking in a straight line will stop the car before it hits the 
truck, or whether it’s better to swerve in as tight a circular turn as possible. The forces acting on the car are the 
force due to gravity gF mg=

G G
 and the force due to kinetic friction kf

G
 for the former option and the force due to 

static friction sf
G

 for the latter option. 
DEVELOP� For the braking option, Newton’s second law applied to the car in the x and y directions gives  

:
: 0

k
s

x f ma
g a

y n mg
µ

= ½
=¾− = ¿

,  

where we have used Equation 5.3 fs = µsn. For the swerve option, Newton’s second law applied in the x and y 
directions gives  Using Newton’s Laws� 5-29 
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2
2

s

:
: 0

sx f ma mv r
g v r

y n mg
µ

½= = ° =¾− = °¿
 

Use the kinematic Equation 2.11 ( )2 2
0 02v v a x x= + −  to find the stopping distance in the braking option, and 

calculate the turning radius r for the swerve option. Compare these results to decide which option to take. 
EVALUATE For the braking option, the stopping distance is 

P
( )

( )

0

2 2
0 0

2 2 2
0 0 0

0
s s

2

2 2 2

v v a x x

v v v
x x

a g gµ µ

=

= + −

− = − = − =
−

 

where the acceleration has a negative sign because it is oriented opposite to the velocity. For the swerving option, 
the turning radius is 2

sr v gµ=  = (x í x0). Thus the turning radius is greater then the stopping distance, so you 
should chose to brake in a straight line rather than swerve. 
ASSESS� Note that if the coefficient of static friction decreases from its maximum value of µs, the turning radius 
will get larger, and the linear acceleration will decrease, as expected.  

 64. INTERPRET This problem involves Newton’s second law and frictional forces. The object of interest is the block 
that slides up an incline and back down again. We want to show that when the coefficient of kinetic friction is 

3
5 tankµ θ= , the final speed of the block half its initial speed.  

DEVELOP� Draw a free-body diagram of the block going up and going down the incline (see figure below). Using 
Equation 5.3 fk = µkn, and applying Newton’s law to the block going up the incline gives 

( ) ( )k up
up

: sin
sin cos

: cos 0 k

x mg f ma
a g g

y n mg
θ

θ µ θ
θ

+ = ½° = +¾− = °¿
 

When going down, the acceleration is  

( ) ( )k down
down

: sin
sin cos

: cos 0 k

x mg f ma
a g g

y n mg
θ

θ µ θ
θ

− = ½
= +¾− = ¿

 

Knowing the acceleration, use Equation 2.11, ( )2 2
0 02v v a x x= + −  to express the initial upward speed and the 

final downward speed, then use the fact that down up 1 2v v =  to find an expression for the coefficient of kinetic 
friction.  

 
EVALUATE Suppose the block slides up a distance L. From Equation 2.11, its initial speed upward is 

up up2v a L= −  

Similarly, as the block slides down the same distance, it returns to the bottom with speed 

down down2v a L=  

The condition down up 1 2v v =  implies  

( ) ( )
( ) ( )

( )
( )

2

k kdown down

up up kk

sin cos tan21
4 2 tansin cos

gv a L
v a L g

θ µ θ θ µ
θ µθ µ θ

§ · ª − º −¬ ¼= = = =¨ ¸ − +ª + º© ¹ ¬ ¼
 

which gives ( )3
k 5 tan .µ θ=  
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This problem is over-specified: There are three unknowns and four equations. However, we can still estimate if 
any of the forces are greater than 100 N. 
Start with the left pot and solve the top equation for 1T then substitute that value into the second equation to find 2:T  

( )
( )

( )
( ) ( ) ( )

( ) ( ) ( )

1 2

2 2 1

2
2

2

cos 13.9
cos 54.0

cos 13.9
sin 54.0 sin 13.9

cos 54.0

1.336 0.240 3.85 kg 9.8 m/s

34.4 N

T T

T T m g

T

T

°
=

°
°

° − ° =
°

− =
=

 

Now substitute this back into the equation for T1 to find that tension: ( ) ( )1 2 cos 13.9 cos 54 56.9 N.T T= =D D  

Do the same thing for the right pot. 

( )
( )

( )
( ) ( ) ( )

( ) ( ) ( )

3 2

2 2 3

2
2

2

cos 13.9
cos 68.0

cos 13.9
sin 68.0 sin 13.9

cos 68.0

2.403 0.240 9.28 kg 9.8 m/s

34.4 N

T T

T T m g

T

T

°
=

°
°

° + ° =
°

+ =
=

 

Now substitute this back into the equation for T3 to find ( ) ( )3 2 cos 13.9 cos 68.0 89.2 NT T= ° ° = . Thus, the 100 

N string will suffice. 
ASSESS Although 100 N string will work, we would be better off with a bigger margin of error. As it is, the far-
right string will break if anyone waters the plants! 

 72. INTERPRET� This problem involves Newton’s second law and uniform circular motion. We need to compare the 
tangential speed of the hammer as it goes around the circle with that of a “speeding bullet.” The forces acting on 
the hammer are the force of gravity gF mg=

G G
, and the tension force from the cable.  

DEVELOP� Draw a free-body diagram of the hammer as seen from the side (see figure below). Applying Newton’s 
second law in the horizontal and vertical directions gives 

( )
( ) ( )

2 2: cos
tan: sin

x T ma mv r v g
ry T mg

θ
θθ

½= = ° =¾
= °¿

 

where we have used Equation 5.1 a = mv2/r for the centripetal acceleration that the hammer experiences. We can 
now solve for the speed. 

 
EVALUATE Solving the above equation for the tangential speed v gives 

( )
( ) ( )

( )

2

22.4 m 9.8 m/s
11.5 m/s

tan tan 10

v

rgv
θ

=

= ± = ± = ±
D

 

which is an order of magnitude slower than a speeding bullet.  
ASSESS Notice that the units under the radical are m2/s2. The positive and negative answers correspond to the 
hammer turned clockwise and counter clockwise around the circle.  


